Engineering muscle cell alignment through 3D bioprinting

2017 ◽  
Vol 105 (9) ◽  
pp. 2582-2588 ◽  
Author(s):  
Pamela Mozetic ◽  
Sara Maria Giannitelli ◽  
Manuele Gori ◽  
Marcella Trombetta ◽  
Alberto Rainer
2021 ◽  
Author(s):  
Antonio Dominguez-Alfaro ◽  
Miryam Criado ◽  
David Mecerreyes ◽  
Elena Gabirondo ◽  
Haizpea Lasa ◽  
...  

The development of tailor-made polymers to build artificial three-dimensional scaffolds to repair damaged skin tissues is gaining increasing attention in the bioelectronics field. Poly (3,4-ethylene dioxythiophene) (PEDOT) is the gold...


2002 ◽  
Vol 283 (5) ◽  
pp. H1907-H1914 ◽  
Author(s):  
Paul R. Standley ◽  
Antonino Camaratta ◽  
Brian P. Nolan ◽  
Christian T. Purgason ◽  
Melinda A. Stanley

We investigated the effects of cyclic stretch on vascular smooth muscle cell (VSMC) alignment and potential overlap of signaling modalities with stretch-induced proliferation. VSMC were subjected to graded stretch (1 Hz at 100–124% of resting length) for 48 h. Graded stretch resulted in graded VSMC alignment from a minimum of completely random orientation to a maximum of ∼80–85° to the stretch vector. Alignment was reversible within 48 h of stretch cessation and independent of signaling modalities mediating stretch-induced proliferation: modulation of IGF-1, MAPK, phosphatidylinositol 3-kinase, tyrosine kinase, and stretch-activated calcium channels did not affect alignment. Nitric oxide (NO) synthase (NOS) blockade uncoupled alignment. Neither the NO donor, cytokine-induced NOS activity, nor l-citrulline affected alignment, but inhibited VSMC proliferation. Therefore, stretch-induced proliferation and alignment are differentially regulated, with NO a common signaling molecule for both. Targeting NOS in states such as restenosis and hypertension may prove to be beneficial.


2011 ◽  
Vol 300 (5) ◽  
pp. H1770-H1780 ◽  
Author(s):  
Jian-Hong Zhu ◽  
Chun-Lin Chen ◽  
Sheila Flavahan ◽  
Jennifer Harr ◽  
Baogen Su ◽  
...  

Mice deficient in Notch3 have defects in arterial vascular smooth muscle cell (VSMC) mechanosensitivity, including impaired myogenic responses and autoregulation, and inappropriate VMSC orientation. Experiments were performed to determine if Notch3 is activated by mechanical stimulation and contributes to mechanosensitive responses of VSMCs, including cell realignment. Cyclic, uniaxial stretch (10%, 1 Hz) of human VSMCs caused Notch3 activation, demonstrated by a stretch-induced increase in hairy and enhancer of split 1/hairy-related transcription factor-1 expression, translocation of Notch3 to the nucleus, and a decrease in the Notch3 extracellular domain. These effects were prevented by inhibiting the expression [small interfering (si)RNA] or proteolytic activation of Notch3 { N-( R)-[2-(hydroxyaminocarbonyl)methyl]−4-methylpentanoyl-l-naphthylalanyl-l-alanine-2-aminoethyl amide (TAPI-1; 50 μmol/l) to inhibit TNF-α-converting enzyme (TACE) or N-[ N-(3,5-difluorophenacetyl-l-alanyl)]- S-phenylglycine t-butyl ester (DAPT; 20 μmol/l) to inhibit γ-secretase}. Stretch increased the activity of ROS within VSMCs, determined using dichlorodihydrofluorescein fluorescence. Catalase (1,200 U/ml), which degrades H2O2, inhibited the stretch-induced activation of Notch3, whereas in nonstretched cells, increasing H2O2 activity [H2O2 or manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin] caused activation of Notch3. Stretch increased the activity of TACE, which was prevented by catalase. Stretch-induced activation of p38 MAPK in VSMCs was inhibited either by catalase or by inhibiting Notch3 expression (siRNA). Stretch caused VSMCs to realign perpendicular to the direction of the mechanical stimulus, which was significantly inhibited by catalase or by inhibiting the expression (siRNA) or activation of Notch3 (TAPI-1 or DAPT). Therefore, cyclic uniaxial stretch activates Notch3 signaling through a ROS-mediated mechanism, and the presence of Notch3 is necessary for proper stretch-induced cell alignment in VSMCs. This mechanism may contribute to the physiological role of Notch3 in mediating developmental maturation of VSMCs.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Sign in / Sign up

Export Citation Format

Share Document