Activation of mammalian terget of rapamycin kinase and glycogen synthase kinase‐3β accompanies abnormal accumulation of cholesterol in fibroblasts from Niemann‐Pick type C patients

2018 ◽  
Vol 120 (4) ◽  
pp. 6580-6588 ◽  
Author(s):  
Marcin Wos ◽  
Magdalena Komiażyk ◽  
Slawomir Pikula ◽  
Anna Tylki‐Szymanska ◽  
Joanna Bandorowicz‐Pikula
2010 ◽  
Vol 30 (7) ◽  
pp. 1757-1768 ◽  
Author(s):  
Nobuhiro Kurabayashi ◽  
Tsuyoshi Hirota ◽  
Mihoko Sakai ◽  
Kamon Sanada ◽  
Yoshitaka Fukada

ABSTRACT Circadian molecular oscillation is generated by a transcription/translation-based feedback loop in which CRY proteins play critical roles as potent inhibitors for E-box-dependent clock gene expression. Although CRY2 undergoes rhythmic phosphorylation in its C-terminal tail, structurally distinct from the CRY1 tail, little is understood about how protein kinase(s) controls the CRY2-specific phosphorylation and contributes to the molecular clockwork. Here we found that Ser557 in the C-terminal tail of CRY2 is phosphorylated by DYRK1A as a priming kinase for subsequent GSK-3β (glycogen synthase kinase 3β)-mediated phosphorylation of Ser553, which leads to proteasomal degradation of CRY2. In the mouse liver, DYRK1A kinase activity toward Ser557 of CRY2 showed circadian variation, with its peak in the accumulating phase of CRY2 protein. Knockdown of Dyrk1a caused abnormal accumulation of cytosolic CRY2, advancing the timing of a nuclear increase of CRY2, and shortened the period length of the cellular circadian rhythm. Expression of an S557A/S553A mutant of CRY2 phenocopied the effect of Dyrk1a knockdown in terms of the circadian period length of the cellular clock. DYRK1A is a novel clock component cooperating with GSK-3β and governs the Ser557 phosphorylation-triggered degradation of CRY2.


2017 ◽  
Vol 18 (4) ◽  
pp. 396-404
Author(s):  
Concetta Saponaro ◽  
Michele Maffia ◽  
Nicola Renzo ◽  
Addolorata Coluccia

2014 ◽  
Vol 9 (6) ◽  
pp. 2043-2050 ◽  
Author(s):  
DA-WEI LI ◽  
ZHI-QIANG LIU ◽  
WEI-CHEN ◽  
MIN-YAO ◽  
GUANG-REN LI

2020 ◽  
Vol 21 (14) ◽  
pp. 4970
Author(s):  
Juan Perdomo ◽  
Carlos Quintana ◽  
Ignacio González ◽  
Inmaculada Hernández ◽  
Sara Rubio ◽  
...  

Melatonin is present in all living organisms where it displays a diversity of physiological functions. Attenuation of melanogenesis by melatonin has been reported in some mammals and also in rodent melanoma cells. However, melatonin may also stimulate melanogenesis in human melanoma cells through mechanisms that have not yet been revealed. Using the human melanoma cells SK-MEL-1 as a model, an increase in both tyrosinase activity and melanin was already observed at 24 h after melatonin treatment with maximal levels of both being detected at 72 h. This effect was associated with the induction in the expression of the enzymes involved in the synthesis of melanin. In this scenario, glycogen synthase kinase-3β seems to play a significant function since melatonin decreased its phosphorylation and preincubation with specific inhibitors of this protein kinase (lithium or BIO) reduced the expression and activity of tyrosinase. Blocking of PI3K/AKT pathway stimulated melanogenesis and the effect was suppressed by the inhibitors of glycogen synthase kinase-3β. Although melatonin is a recognized antioxidant, we found that it stimulates reactive oxygen species generation in SK-MEL-1 cells. These chemical species seem to be an important signal in activating the melanogenic process since the antioxidants N-acetyl-l-cysteine and glutathione decreased both the level and activity of tyrosinase stimulated by melatonin. Our results support the view that regulation of melanogenesis involves a cross-talk between several signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document