Universal two‐point interaction of mediator KIX with 9aaTAD activation domains

Author(s):  
Alena Hofrova ◽  
Petr Lousa ◽  
Monika Kubickova ◽  
Jozef Hritz ◽  
Tomas Otasevic ◽  
...  
Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


2006 ◽  
Vol 143 (1-2) ◽  
pp. 22-28 ◽  
Author(s):  
Guotao Sun ◽  
Nan Bi ◽  
Guoping Li ◽  
Xuewei Zhu ◽  
Wuwei Zeng ◽  
...  

1996 ◽  
Vol 16 (3) ◽  
pp. 839-846 ◽  
Author(s):  
E M Newton ◽  
U Knauf ◽  
M Green ◽  
R E Kingston

Heat shock factor (HSF) activates transcription in response to cellular stress. Human HSF1 has a central regulatory domain which can repress the activity of its activation domains at the control temperature and render them heat shock inducible. To determine whether the regulatory domain works in tandem with specific features of the HSF1 transcriptional activation domains, we first used deletion and point mutagenesis to define these activation domains. One of the activation domains can be reduced to just 20 amino acids. A GAL4 fusion protein containing the HSF 1 regulatory domain and this 20-amino-acid activation domain is repressed at the control temperature but potently activates transcription in response to heat shock. No specific amino acids in this activation domain are required for response to the regulatory domain; in particular, none of the potentially phosphorylated serine and threonine residues are required for heat induction, implying that heat-induced phosphorylation of the transcriptional activation domains is not required for induction. The regulatory domain is able to confer heat responsiveness to an otherwise completely heterologous chimeric activator that contains a portion of the VP16 activation domain, suggesting that the regulatory domain can sense heat in the absence of other portions of HSF1.


1997 ◽  
Vol 41 (9) ◽  
pp. 1904-1909 ◽  
Author(s):  
V de Crécy-Lagard ◽  
W Saurin ◽  
D Thibaut ◽  
P Gil ◽  
L Naudin ◽  
...  

Streptomyces pristinaespiralis and S. virginiae both produce closely related hexadepsipeptide antibiotics of the streptogramin B family. Pristinamycins I and virginiamycins S differ only in the fifth incorporated precursor, di(mono)methylated amine and phenylalanine, respectively. By using degenerate oligonucleotide probes derived from internal sequences of the purified S. pristinaespiralis SnbD and SnbE proteins, the genes from two streptogramin B producers, S. pristinaespiralis and S. virginiae, encoding the peptide synthetase involved in the activation and incorporation of the last four precursors (proline, 4-dimethylparaaminophenylalanine [for pristinamycin I(A)] or phenylalanine [for virginiamycin S], pipecolic acid, and phenylglycine) were cloned. Analysis of the sequence revealed that SnbD and SnbE are encoded by a unique snbDE gene. SnbDE (4,849 amino acids [aa]) contains four amino acid activation domains, four condensation domains, an N-methylation domain, and a C-terminal thioesterase domain. Comparison of the sequences of 55 amino acid-activating modules from different origins confirmed that these sequences contain enough information for the performance of legitimate predictions of their substrate specificity. Partial sequencing (1,993 aa) of the SnbDE protein of S. virginiae allowed comparison of the proline and aromatic acid activation domains of the two species and the identification of coupled frameshift mutations.


1996 ◽  
Vol 29 (18) ◽  
pp. 6073-6085 ◽  
Author(s):  
José María Román ◽  
Rolf Tarrach

2018 ◽  
Vol 38 (10) ◽  
Author(s):  
Derek Pacheco ◽  
Linda Warfield ◽  
Michelle Brajcich ◽  
Hannah Robbins ◽  
Jie Luo ◽  
...  

ABSTRACTEukaryotic transcription activation domains (ADs) are intrinsically disordered polypeptides that typically interact with coactivator complexes, leading to stimulation of transcription initiation, elongation, and chromatin modifications. Here we examined the properties of two strong and conserved yeast ADs: Met4 and Ino2. Both factors have tandem ADs that were identified by conserved sequence and functional studies. While the AD function of both factors depended on hydrophobic residues, Ino2 further required key conserved acidic and polar residues for optimal function. Binding studies showed that the ADs bound multiple Med15 activator-binding domains (ABDs) with similar orders of micromolar affinity and similar but distinct thermodynamic properties. Protein cross-linking data show that no unique complex was formed upon Met4-Med15 binding. Rather, we observed heterogeneous AD-ABD contacts with nearly every possible AD-ABD combination. Many of these properties are similar to those observed with yeast activator Gcn4, which forms a large heterogeneous, dynamic, and fuzzy complex with Med15. We suggest that this molecular behavior is common among eukaryotic activators.


1990 ◽  
Vol 10 (10) ◽  
pp. 5532-5535 ◽  
Author(s):  
C Abate ◽  
D Luk ◽  
E Gagne ◽  
R G Roeder ◽  
T Curran

The products of c-fos and c-jun (Fos and Jun) function in gene regulation by interacting with the AP-1 binding site. Here we have examined the contribution of Fos and Jun toward transcriptional activity by using Fos and Jun polypeptides purified from Escherichia coli. Fos contained a transcriptional activation domain as well as a region which exerted a negative influence on transcriptional activity in vitro. Moreover, distinct activation domains in both Fos and Jun functioned cooperatively in transcriptional stimulation. Thus, regulation of gene expression by Fos and Jun results from an integration of several functional domains in a bimolecular complex.


Sign in / Sign up

Export Citation Format

Share Document