Analysis of lipid surface area in protein-membrane systems combining voronoi tessellation and monte carlo integration methods

2011 ◽  
Vol 33 (3) ◽  
pp. 286-293 ◽  
Author(s):  
Takaharu Mori ◽  
Fumiko Ogushi ◽  
Yuji Sugita
2010 ◽  
Vol 98 (3) ◽  
pp. 486a
Author(s):  
Takaharu Mori ◽  
Fumiko Ogushi ◽  
Yuji Sugita

2008 ◽  
Vol 32 ◽  
pp. 275-278 ◽  
Author(s):  
Luis F. Herrera ◽  
Duong D. Do ◽  
Greg R. Birkett

The determination of the properties of porous solids remains an integral element to the understanding of adsorption, transport and reaction processes in new and novel materials. The advent of molecular simulation has led to an improved understanding and prediction of adsorption processes using molecular models. These molecular models have removed the constraints of traditional adsorption theories, which require rigid assumptions about the structure of a material. However, even if we possess a full molecular model of a solid, it is still desirable to define the properties of this solid in a standard manner with quantities such as the accessible volume, surface area and pore size distribution. This talk will present Monte Carlo integration methods for calculating these quantities in a physically meaningful and unambiguous way. The proposed methods for calculating the surface area and pore size distribution were tested on an array of idealised solid configurations including cylindrical and cubic pores. The method presented is adequate for all configurations tested giving confidence to its applicability to disordered solids. The method is further tested by using several different noble gas probe molecules. Finally, the results of this technique are compared against those obtained by applying the BET equation for a range of novel materials.


2004 ◽  
Vol 123 (2) ◽  
pp. 201-225 ◽  
Author(s):  
Luc Bauwens ◽  
Charles S. Bos ◽  
Herman K. van Dijk ◽  
Rutger D. van Oest

2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 < z < 1.37 at a mass range of 13.6 < log (M/M⊙) < 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.


Sign in / Sign up

Export Citation Format

Share Document