Molecular electrostatic potential and “atoms-in-molecules” analyses of the interplay between π-hole and lone pair···π/X-H···π/metal···π interactions

2017 ◽  
Vol 39 (9) ◽  
pp. 458-463 ◽  
Author(s):  
Antonio Bauzá ◽  
Saikat Kumar Seth ◽  
Antonio Frontera
2015 ◽  
Vol 93 (11) ◽  
pp. 1169-1175 ◽  
Author(s):  
Mehdi D. Esrafili ◽  
Fariba Mohammadian-Sabet ◽  
Mohammad Mehdi Baneshi

In this work, the cooperative effects between anion−π and fluorine bond interactions are studied by ab initio calculations at the MP2/6-311++G** level. Cooperative effects are observed in complexes in which anion−π and fluorine bond interactions coexist. For each complex, the shortening of the binding distance in the fluorine bond is more prominent than that in the anion−π bond. Favorable cooperativity energies are found with values that range between –0.51 and –0.76 kcal/mol. The atoms in molecules and molecular electrostatic potential analyses are carried out for these complexes to understand the nature of anion−π and fluorine bond interactions and the origin of the cooperativity.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3289
Author(s):  
Shridhar R. Gadre ◽  
Cherumuttathu H. Suresh ◽  
Neetha Mohan

Following the pioneering investigations of Bader on the topology of molecular electron density, the topology analysis of its sister field viz. molecular electrostatic potential (MESP) was taken up by the authors’ groups. Through these studies, MESP topology emerged as a powerful tool for exploring molecular bonding and reactivity patterns. The MESP topology features are mapped in terms of its critical points (CPs), such as bond critical points (BCPs), while the minima identify electron-rich locations, such as lone pairs and π-bonds. The gradient paths of MESP vividly bring out the atoms-in-molecule picture of neutral molecules and anions. The MESP-based characterization of a molecule in terms of electron-rich and -deficient regions provides a robust prediction about its interaction with other molecules. This leads to a clear picture of molecular aggregation, hydrogen bonding, lone pair–π interactions, π-conjugation, aromaticity and reaction mechanisms. This review summarizes the contributions of the authors’ groups over the last three decades and those of the other active groups towards understanding chemical bonding, molecular recognition, and reactivity through topology analysis of MESP.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Moses M. Edim ◽  
Hitler Louis ◽  
Emmanuel A. Bisong ◽  
Apebende G. Chioma ◽  
Obieze C. Enudi ◽  
...  

Abstract Cyclobutane and its halo-substituted derivatives and its heteroatom doped derivatives have been extensively investigated in this study because of the vast applications and interesting chemistry associated with them, the vibrational assignments, Natural Bond Orbital (NBO) analysis, Conceptual Density Functional Theory, Quantum Mechanical Descriptors and Molecular Electrostatic Potential (MEP) analysis have been explored in this study. The corresponding wavenumbers of the studied compounds have as well been assigned by Potential Energy Distribution analysis. Several inter and intramolecular hyperconjugative interactions within the studied compounds have been revealed by the NBO analysis with a confirmation of geometric hybridization and electronic occupancy. The compounds reactivity was observed to decrease down the halo group in manners such as the stability, both were observed to decrease from azetidine to thietane. The distribution of charge was observed to be affected by the ring substituent as observed from the charge population analysis; in addition, adjacent atoms are very much affected by the inherent properties of the substituted atoms. The NBO result suggests that the molecules are stabilized by lone pair delocalization of electrons from the substituted atoms and molecular electrostatic potential (MEP) studies revealed that substituted halogens and doped heteroatoms are important and most probable sites of electrostatic interactions.


2016 ◽  
Vol 69 (9) ◽  
pp. 975 ◽  
Author(s):  
Anmol Kumar ◽  
Shridhar R. Gadre

The Atoms in Molecules (AIM) concept based on the zero-flux surface (ZFS) of the gradient of molecular electrostatic potential (MESP) has been recently proposed by the present authors. The nature of MESP-based atomic basins brings out the asymmetric electronic distribution in a molecule. An electron-rich atom among the two bonded atoms is seen to possess a completely closed MESP-based atomic basin. The present article illustrates the nature of atomic basins for a variety of molecules such as BF, BH3, AlCl3, B2H6, and Al2Cl6, and a Lewis acid–base pair, viz. NH3BH3 wherein the electronic distribution is not merely guided by difference in the electronegativity of the atoms. The study also explores some transition metal complexes, viz. Ni(CO)4, Fe(CO)5, Cr(CO)6, Mn2(CO)10, Co2(CO)8, Fe(η5-C5H5)2, Co(η3-C3H5), and Co(η3-C3H5)(CO)3, which show a similar phenomenon of intricate charge transfer among the ligands and the metal centre. The present article employs MESP-based AIM for a qualitative explanation of the shielding or deshielding effects revealed by NMR data as well as susceptibility of an atomic region towards an electrophilic or nucleophilic attack. Because the topographical features of MESP and thus the nature of atomic basins are not very sensitive to the level of theory and basis set, the present article demonstrates the capability of MESP as a consistent and simple tool for the portrayal of asymmetry in molecular charge distribution.


2021 ◽  
Author(s):  
Thufail M. Ismail ◽  
Neetha Mohan ◽  
P. K. Sajith

Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).


Sign in / Sign up

Export Citation Format

Share Document