Catechol oxidase and phenoxazinone synthase mimicking activity, X‐ray diffraction and density function theory study of pyridine and phenolate‐based manganese(II) and iron(III) complexes: Synthesis and spectroscopic characterization

2020 ◽  
Vol 67 (8) ◽  
pp. 1387-1407
Author(s):  
Abd El‐Motaleb M. Ramadan ◽  
Shaban Y. Shaban ◽  
Mohamed M. Ibrahim ◽  
Hatem Eissa ◽  
Hamed M. Al‐Saidi ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Madhumita Hazra ◽  
Tanushree Dolai ◽  
Akhil Pandey ◽  
Subrata Kumar Dey ◽  
Animesh Patra

The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2)HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.


2011 ◽  
Vol 221 ◽  
pp. 180-183 ◽  
Author(s):  
Jian Li ◽  
Xun Zhang Yu ◽  
Kai Zhang

The ring-opening reaction between bisphenol A and epichlorohydrin was calculated by Gaussian03. The Density Function Theory (DFT) method were employed to study the geometry structures of bisphenol A and epichlorohydrin and the product was obtained on the base of B3LYP/6-31G+ model in this paper. The transitional states (Ts1, Ts2) during the ring-opening process were found by TS method and the energy changing of the system was proved by IRC calculation. Results showed that the energy reduced by 64.37726kJ/mol during the ring-opening process. The product was confirmed to be thermodynamically stable.


2021 ◽  
Vol 91 (5) ◽  
pp. 828-834
Author(s):  
K. V. Zaitsev ◽  
A. Yu. Oprunenko ◽  
I. P. Gloriozov ◽  
M. S. Nechaev ◽  
Yu. F. Oprunenko ◽  
...  

2017 ◽  
Vol 72 (8) ◽  
pp. 609-615
Author(s):  
Lukas Heletta ◽  
Stefan Seidel ◽  
Christopher Benndorf ◽  
Hellmut Eckert ◽  
Rainer Pöttgen

AbstractThe gallium-containing Heusler phases ScRh2Ga, ScPd2Ga, TmRh2Ga and LuRh2Ga have been synthesized by arc-melting of the elements followed by different annealing sequences to improve phase purity. The samples have been studied by powder X-ray diffraction. The structures of Lu0.97Rh2Ga1.03 (Fm3̅m, a=632.94(5) pm, wR2=0.0590, 46 F2 values, seven variables) and Sc0.88Rh2Ga1.12 (a=618.91(4) pm, wR2=0.0284, 44 F2 values, six variables) have been refined from single crystal X-ray diffractometer data. Both gallides show structural disorder through Lu/Ga and Sc/Ga mixing. Temperature dependent magnetic susceptibility measurements showed Pauli paramagnetism for ScRh2Ga, ScPd2Ga, and LuRh2Ga and Curie-Weiss paramagnetism for TmRh2Ga. 45Sc and 71Ga solid state MAS NMR spectroscopic investigations of the Sc containing compounds confirmed the site mixing effects typically observed for Heusler phases. The data indicate that the effect of mixed Sc/Ga occupancy is significantly stronger in ScRh2Ga than in ScPd2Ga.


Sign in / Sign up

Export Citation Format

Share Document