Natural killer cytotoxicity in the diagnosis of immune dysfunction: Criteria for a reproducible assay

1990 ◽  
Vol 4 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Theresa L. Whiteside ◽  
John Bryant ◽  
Ronald B. Herberman ◽  
Roger Day
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gen Zou ◽  
Jianzhang Wang ◽  
Xinxin Xu ◽  
Ping Xu ◽  
Libo Zhu ◽  
...  

Abstract Background Endometriosis is a refractory and recurrent disease and it affects nearly 10% of reproductive-aged women and 40% of infertile patients. The commonly accepted theory for endometriosis is retrograde menstruation where endometrial tissues invade into peritoneal cavity and fail to be cleared due to immune dysfunction. Therefore, the comprehensive understanding of immunologic microenvironment of peritoneal cavity deserves further investigation for the previous studies mainly focus on one or several immune cells. Results High-quality transcriptomes were from peritoneal fluid samples of patients with endometriosis and control, and firstly subjected to 10 × genomics single-cell RNA-sequencing. We acquired the single-cell transcriptomes of 10,280 cells from endometriosis sample and 7250 cells from control sample with an average of approximately 63,000 reads per cell. A comprehensive map of overall cells in peritoneal fluid was first exhibited. We unveiled the heterogeneity of immune cells and discovered new cell subtypes including T cell receptor positive (TCR+) macrophages, proliferating macrophages and natural killer dendritic cells in peritoneal fluid, which was further verified by double immunofluorescence staining and flow cytometry. Pseudo-time analysis showed that the response of macrophages to the menstrual debris might follow the certain differentiation trajectory after endometrial tissues invaded into the peritoneal cavity, that is, from antigen presentation to pro-inflammation, then to chemotaxis and phagocytosis. Our analyses also mirrored the dysfunctions of immune cells including decreased phagocytosis and cytotoxic activity and elevated pro-inflammatory and chemotactic effects in endometriosis. Conclusion TCR+ macrophages, proliferating macrophages and natural killer dendritic cells are firstly reported in human peritoneal fluid. Our results also revealed that immune dysfunction happens in peritoneal fluid of endometriosis, which may be responsible for the residues of invaded menstrual debris. It provided a large-scale and high-dimensional characterization of peritoneal microenvironment and offered a useful resource for future development of immunotherapy.


1993 ◽  
Vol 265 (2) ◽  
pp. R453-R459 ◽  
Author(s):  
S. Take ◽  
T. Mori ◽  
T. Katafuchi ◽  
T. Hori

The brain has been known to produce high levels of interferon-alpha (IFN-alpha) during viral infections. We investigated the central and peripheral mechanisms of the brain IFN-alpha-induced suppression of natural killer (NK) cytotoxicity in the rat. The activity of NK cells in the spleen and the peripheral blood decreased 30-120 min after intracerebroventricular (icv) injection of recombinant human IFN-alpha of > 1,000 U but not after its intraperitoneal injection. This effect was antagonized by pretreatment with icv naltrexone (NLTX). Splenic denervation was observed to completely abolish the IFN-alpha-induced suppression of NK activity, whereas bilateral adrenalectomy did not. Furthermore, this immunosuppression was blocked by an icv injection of an antagonist of corticotropin-releasing factor (CRF), alpha-helical CRF-(9-41). The icv injection of CRF resulted in reduced NK activity, which was not affected by NLTX. The results suggest that brain IFN-alpha activates the CRF system through central opioid receptors and thereby suppresses the NK cytotoxicity predominantly through splenic sympathetic innervation.


Author(s):  
M. VITALE ◽  
A.R. MARIANI ◽  
S. PAPA ◽  
A. FACCHINI ◽  
F.A. MANZOLI

2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Jiaying Wang ◽  
Miaohua Zhu ◽  
Xiaoming Zhou ◽  
Tingting Wang ◽  
Yanni Xi ◽  
...  

1985 ◽  
Vol 96 (2) ◽  
pp. 409-417 ◽  
Author(s):  
Hiroshi Yamamoto ◽  
Shigemi Fuyama ◽  
Shigeru Arai ◽  
Fujiro Sendo

Sign in / Sign up

Export Citation Format

Share Document