scholarly journals Connective tissue growth factor causes persistent pro?2(I) collagen gene expression induced by transforming growth factor-? in a mouse fibrosis model

2005 ◽  
Vol 203 (2) ◽  
pp. 447-456 ◽  
Author(s):  
Sonoko Chujo ◽  
Fumiaki Shirasaki ◽  
Shigeru Kawara ◽  
Yutaka Inagaki ◽  
Takuro Kinbara ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190217 ◽  
Author(s):  
Arunachal Chatterjee ◽  
John Barnard ◽  
Christine Moravec ◽  
Russell Desnoyer ◽  
Kalyan Tirupula ◽  
...  

2006 ◽  
Vol 290 (5) ◽  
pp. G883-G893 ◽  
Author(s):  
Shizhong Zheng ◽  
Anping Chen

Upon liver injury, quiescent hepatic stellate cells (HSCs), the most relevant cell type for hepatic fibrogenesis, become active and overproduce extracellular matrix (ECM). Connective tissue growth factor (CTGF) promotes ECM production. Overexpression of CTGF during hepatic fibrogenesis is induced by transforming growth factor (TGF)-β. We recently demonstrated that curcumin reduced cell growth and inhibited ECM gene expression in activated HSCs. Curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-γ and stimulated its activity in activated HSCs, which was required for curcumin to suppress ECM gene expression, including αI(I)-collagen. The underlying mechanisms remain largely unknown. The aim of this study was to elucidate the mechanisms by which curcumin suppresses αI(I)-collagen gene expression in activated HSCs. We hypothesize that inhibition of αI(I)-collagen gene expression in HSCs by curcumin is mediated by suppressing CTGF gene expression through attenuating oxidative stress and interrupting TGF-β signaling. The present report demonstrated that curcumin significantly reduced the abundance of CTGF in passaged HSCs and suppressed its gene expression. Exogenous CTGF dose dependently abrogated the inhibitory effect of curcumin. Activation of PPAR-γ by curcumin resulted in the interruption of TGF-β signaling by suppressing gene expression of TGF-β receptors, leading to inhibition of CTGF gene expression. The phytochemical showed its potent antioxidant property by significantly increasing the level of total glutathione (GSH) and the ratio of GSH to GSSG in activated HSCs. De novo synthesis of cellular GSH was a prerequisite for curcumin to interrupt TGF-β signaling and inhibited gene expression of CTGF and αI(I)-collagen in activated HSCs. Taken together, our results demonstrate that inhibition of αI(I)-collagen gene expression by curcumin in activated HSCs results from suppression of CTGF gene expression through increasing cellular GSH contents and interruption of TGF-β signaling. These results provide novel insights into the mechanisms underlying inhibition of HSC activation by curcumin.


2010 ◽  
Vol 298 (3) ◽  
pp. F796-F806 ◽  
Author(s):  
Sven Kroening ◽  
Emily Neubauer ◽  
Bernd Wullich ◽  
Jan Aten ◽  
Margarete Goppelt-Struebe

Tubular epithelial cells secrete connective tissue growth factor (CTGF, CCN2), which contributes to tubulointerstitial fibrosis. However, the molecular regulation of CTGF in human primary tubular epithelial cells (hPTECs) is not well defined. Therefore, CTGF expression was characterized in hPTECs isolated from healthy parts of tumor nephrectomies, with special emphasis on the regulation by transforming growth factor-β (TGF-β) and hypoxia, essential factors in the development of fibrosis. CTGF synthesis was strongly dependent on cell density. High CTGF levels were detected in sparse cells, whereas CTGF expression was reduced in confluent cells. Concomitantly, stimulation of CTGF by TGF-β or the histone deacetylase inhibitor trichostatin was prevented in dense cells. Exposure of hPTECs to low oxygen tension (1% O2) or the hypoxia mimetic dimethyl-oxalylglycine for 24 h reduced CTGF gene expression in most of the 17 preparations analyzed. Preincubation of the cells under hypoxic conditions significantly reduced TGF-β-mediated upregulation of CTGF. In line with these data, CTGF mRNA was only induced in interstitial cells, but not in tubular cells in kidneys of mice exposed to hypoxia. Longer exposure to hypoxia or TGF-β (up to 72 h) did not induce hPTECs to adopt a mesenchymal phenotype characterized by upregulation of α-smooth muscle actin, downregulation of E-cadherin, or increased sensitivity of the cells in terms of CTGF expression. Sensitivity was restored by inhibition of DNA methylation. Taken together, our data provide evidence that exposure to hypoxia decreased CTGF gene expression. Furthermore, hypoxia per se was not sufficient to induce a mesenchymal phenotype in primary tubular epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document