scholarly journals Obesity attenuates inflammation, protein catabolism, dyslipidaemia, and muscle weakness during sepsis, independent of leptin

Author(s):  
Wouter Vankrunkelsven ◽  
Sarah Derde ◽  
Jan Gunst ◽  
Sarah Vander Perre ◽  
Emiel Declerck ◽  
...  
2014 ◽  
Vol 155 (1) ◽  
pp. 3-10
Author(s):  
Levente Bodoki ◽  
Melinda Nagy-Vincze ◽  
Zoltán Griger ◽  
Andrea Péter ◽  
Csilla András ◽  
...  

Idiopathic inflammatory myopathies are systemic, immune-mediated diseases characterized by proximal, symmetrical, progressive muscle weakness. The aim of this work is to give an overview of the biological therapy used in the treatment of idiopathic inflammatory myopathies. The authors also focus on novel results in the therapy directed against the B- and T-cells. They emphasize the importance of new trials in these diseases which may lead to the introduction of novel therapeutic options in these disorders. Orv. Hetil., 2014, 155(1), 3–10.


2020 ◽  
Vol 15 (2) ◽  
pp. 63-73
Author(s):  
Young-Joo Moon ◽  
Won-Bin Shin ◽  
Gwang-Hyun Ryu ◽  
Ji-Yun Lee ◽  
Hyun-A Jeon ◽  
...  

2008 ◽  
pp. 20-21
Author(s):  
Julien Ochala ◽  
Anders Oldfors ◽  
Lars Larsson

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Amr M. Aly

Abstract Purpose To assess the feasibility of total shoulder denervation through two proposed incisions. Methods Total shoulder denervation was performed through an extended delta-pectoral approach and a transverse dorsal approach at the spine of the scapula. The study involved six cadavers. Course and number of articular branches from the lateral pectoral, axillary and supra-scapular nerve were documented. Results All shoulder joint articular branches were accessible through the proposed anterior and posterior approaches. The articular branch of the lateral pectoral nerve and supra scapular nerve were present in all the specimen. Axillary nerve articular branches were variable in number but when present anteriorly were proximal to the deltoid muscular branches and posteriorly proximal to the muscular branches to the teres minor. Conclusion Total glenohumeral denervation was feasible through our proposed anterior and posterior approaches. Enhanced knowledge of articular nerve branches could provide interventional targets for joint and ligament pain, with low risk of muscle weakness.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Tatsuma Okazaki ◽  
Yoshimi Suzukamo ◽  
Midori Miyatake ◽  
Riyo Komatsu ◽  
Masahiro Yaekashiwa ◽  
...  

Introduction: The respiratory muscle strength regulates the effectiveness of coughing, which clears the airways and protects people from pneumonia. Sarcopenia is an aging-related loss of muscle mass and function, the worsening of which is associated with malnutrition. The loss of respiratory and swallowing muscle strength occurs with aging, but its effect on pneumonia is unclear. This study aimed to determine the risks of respiratory muscle weakness on the onset and relapse of pneumonia in older people in conjunction with other muscle-related factors such as malnutrition. Methods: We conducted a longitudinal study with 47 pneumonia inpatients and 35 non-pneumonia controls aged 70 years and older. We evaluated the strength of respiratory and swallowing muscles, muscle mass, and malnutrition (assessed by serum albumin levels and somatic fat) during admission and confirmed pneumonia relapse within 6 months. The maximal inspiratory and expiratory pressures determined the respiratory muscle strength. Swallowing muscle strength was evaluated by tongue pressure. Bioelectrical impedance analysis was used to evaluate the muscle and fat mass. Results: The respiratory muscle strength, body trunk muscle mass, serum albumin level, somatic fat mass, and tongue pressure were significantly lower in pneumonia patients than in controls. Risk factors for the onset of pneumonia were low inspiratory respiratory muscle strength (odds ratio [OR], 6.85; 95% confidence interval [CI], 1.56–30.11), low body trunk muscle mass divided by height2 (OR, 6.86; 95% CI, 1.49–31.65), and low serum albumin level (OR, 5.46; 95% CI, 1.51–19.79). For the relapse of pneumonia, low somatic fat mass divided by height2 was a risk factor (OR, 20.10; 95% CI, 2.10–192.42). Discussion/Conclusions: Respiratory muscle weakness, lower body trunk muscle mass, and malnutrition were risk factors for the onset of pneumonia in older people. For the relapse of pneumonia, malnutrition was a risk factor.


Author(s):  
Niels F. J. Waterval ◽  
Merel-Anne Brehm ◽  
Jaap Harlaar ◽  
Frans Nollet

Abstract Background In people with calf muscle weakness, the stiffness of dorsal leaf spring ankle–foot orthoses (DLS-AFO) needs to be individualized to maximize its effect on walking. Orthotic suppliers may recommend a certain stiffness based on body weight and activity level. However, it is unknown whether these recommendations are sufficient to yield the optimal stiffness for the individual. Therefore, we assessed whether the stiffness following the supplier’s recommendation of the Carbon Ankle7 (CA7) dorsal leaf matched the experimentally optimized AFO stiffness. Methods Thirty-four persons with calf muscle weakness were included and provided a new DLS-AFO of which the stiffness could be varied by changing the CA7® (Ottobock, Duderstadt, Germany) dorsal leaf. For five different stiffness levels, including the supplier recommended stiffness, gait biomechanics, walking energy cost and speed were assessed. Based on these measures, the individual experimentally optimal AFO stiffness was selected. Results In only 8 of 34 (23%) participants, the supplier recommended stiffness matched the experimentally optimized AFO stiffness, the latter being on average 1.2 ± 1.3 Nm/degree more flexible. The DLS-AFO with an experimentally optimized stiffness resulted in a significantly lower walking energy cost (− 0.21 ± 0.26 J/kg/m, p < 0.001) and a higher speed (+ 0.02 m/s, p = 0.003). Additionally, a larger ankle range of motion (+ 1.3 ± 0.3 degrees, p < 0.001) and higher ankle power (+ 0.16 ± 0.04 W/kg, p < 0.001) were found with the experimentally optimized stiffness compared to the supplier recommended stiffness. Conclusions In people with calf muscle weakness, current supplier’s recommendations for the CA7 stiffness level result in the provision of DLS-AFOs that are too stiff and only achieve 80% of the reduction in energy cost achieved with an individual optimized stiffness. It is recommended to experimentally optimize the CA7 stiffness in people with calf muscle weakness in order to maximize treatment outcomes. Trial registration Nederlands Trial Register 5170. Registration date: May 7th 2015. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5170.


Author(s):  
Jordan S. Dutcher ◽  
Albert Bui ◽  
Tochukwu A. Ibe ◽  
Goyal Umadat ◽  
Eugene P. Harper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document