optimal stiffness
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 21)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 334 ◽  
pp. 04020
Author(s):  
Marwa Ouerghemmi ◽  
Christophe Carral ◽  
Patrice Mele

One of the most important components of PEMFC is the gas diffusion layer (GDL), owing to its key role in the reactant diffusion, water management, thermal and electron conductivity. Therefore, the GDL must have an optimal stiffness to ensure these transport functions during numerous hydrothermal cycles. The understanding of its behavior is still a remaining issue. Its orthotropic mechanical behavior requires a series of mechanical characterizations in the plane of the fibers and out of plane. In addition, there are different manufacturing processes for GDL in sheet or roll form to optimize its functional properties. A macro porous layer (MPL) or different PTFE contents might be added by different manufacturers to optimize its performance. In this study, we have performed several mechanical tests differentiating between in plane and out of plane properties in order to characterize different GDLs available on the market. All of the experimental work has been done in the machine (MD) and cross machine direction (CD) according to the fiber orientation. The different GDL types were then classified into categories presenting similar mechanical response.


Author(s):  
Daniel B Quinn ◽  
George V Lauder

Abstract One of the emerging themes of fish-inspired robotics is flexibility. Adding flexibility to the body, joints, or fins of fish-inspired robots can significantly improve thrust and/or efficiency during locomotion. However, the optimal stiffness depends on variables such as swimming speed, so there is no one “best” stiffness that maximizes efficiency in all conditions. Fish are thought to solve this problem by using muscular activity to tune their body and fin stiffness in real-time. Inspired by fish, some recent robots sport polymer actuators, adjustable leaf springs, or artificial tendons that tune stiffness mechanically. Models and water channel tests are providing a theoretical framework for stiffness-tuning strategies that devices can implement. The strategies can be thought of as analogous to car transmissions, which allow users to improve efficiency by tuning gear ratio with driving speed. We provide an overview of the latest discoveries about 1) the propulsive benefits of flexibility, particularly tunable flexibility, and 2) the mechanisms and strategies that fish and fish-inspired robots use to tune stiffness while swimming.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tianjiao Zhang ◽  
Luyu Li ◽  
Yilin Zheng

The dynamic responses of a linear primary structure coupled with a nonlinear energy sink (NES) are investigated under harmonic excitation in the 1 : 1 resonance regime. In civil engineering, initial conditions are usually zero or approximately zero. Therefore, in this study, only these conditions are considered. The strongly modulated response (SMR), whose occurrence is conditional, is the precondition for effective target energy transfer (TET) in this system. Therefore, this study aims to determine the parameter range in which the SMR can occur. The platform phenomenon and other related phenomena are observed while analyzing slow-varying equations. An excitation amplitude interval during which the SMR can occur is obtained, and an approximate analytical solution of the optimal nonlinear stiffness is found. The numerical results show that the NES based on the optimal stiffness performs better in terms of control performance.


Author(s):  
Niels F. J. Waterval ◽  
Merel-Anne Brehm ◽  
Jaap Harlaar ◽  
Frans Nollet

Abstract Background In people with calf muscle weakness, the stiffness of dorsal leaf spring ankle–foot orthoses (DLS-AFO) needs to be individualized to maximize its effect on walking. Orthotic suppliers may recommend a certain stiffness based on body weight and activity level. However, it is unknown whether these recommendations are sufficient to yield the optimal stiffness for the individual. Therefore, we assessed whether the stiffness following the supplier’s recommendation of the Carbon Ankle7 (CA7) dorsal leaf matched the experimentally optimized AFO stiffness. Methods Thirty-four persons with calf muscle weakness were included and provided a new DLS-AFO of which the stiffness could be varied by changing the CA7® (Ottobock, Duderstadt, Germany) dorsal leaf. For five different stiffness levels, including the supplier recommended stiffness, gait biomechanics, walking energy cost and speed were assessed. Based on these measures, the individual experimentally optimal AFO stiffness was selected. Results In only 8 of 34 (23%) participants, the supplier recommended stiffness matched the experimentally optimized AFO stiffness, the latter being on average 1.2 ± 1.3 Nm/degree more flexible. The DLS-AFO with an experimentally optimized stiffness resulted in a significantly lower walking energy cost (− 0.21 ± 0.26 J/kg/m, p < 0.001) and a higher speed (+ 0.02 m/s, p = 0.003). Additionally, a larger ankle range of motion (+ 1.3 ± 0.3 degrees, p < 0.001) and higher ankle power (+ 0.16 ± 0.04 W/kg, p < 0.001) were found with the experimentally optimized stiffness compared to the supplier recommended stiffness. Conclusions In people with calf muscle weakness, current supplier’s recommendations for the CA7 stiffness level result in the provision of DLS-AFOs that are too stiff and only achieve 80% of the reduction in energy cost achieved with an individual optimized stiffness. It is recommended to experimentally optimize the CA7 stiffness in people with calf muscle weakness in order to maximize treatment outcomes. Trial registration Nederlands Trial Register 5170. Registration date: May 7th 2015. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5170.


Author(s):  
Tiancheng Zhou ◽  
Caihua Xiong ◽  
Juanjuan Zhang ◽  
Di Hu ◽  
Wenbin Chen ◽  
...  

Abstract Background Walking and running are the most common means of locomotion in human daily life. People have made advances in developing separate exoskeletons to reduce the metabolic rate of walking or running. However, the combined requirements of overcoming the fundamental biomechanical differences between the two gaits and minimizing the metabolic penalty of the exoskeleton mass make it challenging to develop an exoskeleton that can reduce the metabolic energy during both gaits. Here we show that the metabolic energy of both walking and running can be reduced by regulating the metabolic energy of hip flexion during the common energy consumption period of the two gaits using an unpowered hip exoskeleton. Methods We analyzed the metabolic rates, muscle activities and spatiotemporal parameters of 9 healthy subjects (mean ± s.t.d; 24.9 ± 3.7 years, 66.9 ± 8.7 kg, 1.76 ± 0.05 m) walking on a treadmill at a speed of 1.5 m s−1 and running at a speed of 2.5 m s−1 with different spring stiffnesses. After obtaining the optimal spring stiffness, we recruited the participants to walk and run with the assistance from a spring with optimal stiffness at different speeds to demonstrate the generality of the proposed approach. Results We found that the common optimal exoskeleton spring stiffness for walking and running was 83 Nm Rad−1, corresponding to 7.2% ± 1.2% (mean ± s.e.m, paired t-test p < 0.01) and 6.8% ± 1.0% (p < 0.01) metabolic reductions compared to walking and running without exoskeleton. The metabolic energy within the tested speed range can be reduced with the assistance except for low-speed walking (1.0 m s−1). Participants showed different changes in muscle activities with the assistance of the proposed exoskeleton. Conclusions This paper first demonstrates that the metabolic cost of walking and running can be reduced using an unpowered hip exoskeleton to regulate the metabolic energy of hip flexion. The design method based on analyzing the common energy consumption characteristics between gaits may inspire future exoskeletons that assist multiple gaits. The results of different changes in muscle activities provide new insight into human response to the same assistive principle for different gaits (walking and running).


2021 ◽  
Vol 9 (6) ◽  
pp. 232596712110156
Author(s):  
Sebastian Müller ◽  
Tanja Schwenk ◽  
Michael de Wild ◽  
Dimitris Dimitriou ◽  
Claudio Rosso

Background: Cheese-wiring, the suture that cuts through the meniscus, is a well-known issue in meniscal repair. So far, contributing factors are neither fully understood nor sufficiently studied. Hypothesis/Purpose: To investigate whether the construct stiffness of repair sutures and devices correlates with suture cut-through (cheese-wiring) during load-to-failure testing. Study Design: Controlled laboratory study. Methods: In 131 porcine menisci, longitudinal bucket-handle tears were repaired using either inside-out sutures (n = 66; No. 0 Ultrabraid, 2-0 Orthocord, 2-0 FiberWire, and 2-0 Ethibond) or all-inside devices (n = 65; FastFix360, Omnispan, and Meniscal Cinch). After cyclic loading, load-to-failure testing was performed. The mode of failure and construct stiffness were recorded. A receiver operating characteristic curve analysis was performed to define the optimal stiffness threshold for predicting meniscal repair failure by cheese-wiring. The 2-tailed t test and analysis of variance were used to test significance. Results: Loss of suture fixation was the most common mode of failure in all specimens (58%), except for the Omnispan, which failed most commonly because of anchor pull-through. The Omnispan demonstrated the highest construct stiffness (30.8 ± 3.5 N/mm), whereas the Meniscal Cinch (18.0 ± 8.8 N/mm) and Ethibond (19.4 ± 7.8 N/mm) demonstrated the lowest construct stiffness. The Omnispan showed significantly higher stiffness compared with the Meniscal Cinch ( P < .001) and Ethibond ( P = .02), whereas the stiffness of the Meniscal Cinch was significantly lower compared with that of the FiberWire ( P = .01), Ultrabraid ( P = .04), and FastFix360 ( P = .03). While meniscal repair with a high construct stiffness more often failed by cheese-wiring, meniscal repair with a lower stiffness failed by loss of suture fixation, knot slippage, or anchor pull-through. Meniscal repair with a stiffness >26.5 N/mm had a 3.6 times higher risk of failure due to cheese-wiring during load-to-failure testing (95% CI, 1.4-8.2; P < .0001). Conclusion: Meniscal repair using inside-out sutures and all-inside devices with a higher construct stiffness (>26.5 N/mm) was more likely to fail through suture cut-through (cheese-wiring) than that with a lower stiffness (≤26.5 N/mm). Clinical Relevance: This is the first study investigating the impact of construct stiffness on meniscal repair failure by suture cut-through (cheese-wiring).


Author(s):  
Chang-Yeul Shin ◽  
◽  
Jae-Jin Lee ◽  
Ji-Hun Mun ◽  
Soon-Deok Kwon ◽  
...  

Author(s):  
Emilie Marhuenda ◽  
Christine Fabre ◽  
Cunjie Zhang ◽  
Martà Martin-Fernandez ◽  
Thomas Iskratsch ◽  
...  

Abstract Background Glioblastomas stem-like cells (GSCs) by invading the brain parenchyma, remains after resection and radiotherapy and the tumoral microenvironment become stiffer. GSC invasion is reported as stiffness sensitive and associated with altered N-glycosylation pattern. Glycocalyx thickness modulates integrins mechanosensing, but details remain elusive and glycosylation enzymes involved are unknown. Here, we studied the association between matrix stiffness modulation, GSC migration and MGAT5 induced N-glycosylation in fibrillar 3D context. Method To mimic the extracellular matrix fibrillar microenvironments, we designed 3D-ex-polyacrylonitrile nanofibers scaffolds (NFS) with adjustable stiffnesses by loading multiwall carbon nanotubes (MWCNT). GSCs neurosphere were plated on NFSs, allowing GSCs migration and MGAT5 was deleted using CRISPR-Cas9. Results We found that migration of GSCs was maximum at 166 kPa. Migration rate was correlated with cell shape, expression and maturation of focal adhesion (FA), Epithelial to Mesenchymal Transition (EMT) proteins and (β1,6) branched N-glycan binding, galectin-3. Mutation of MGAT5 in GSC inhibited N-glycans (β1–6) branching, suppressed the stiffness dependence of migration on 166 kPa NFS as well as the associated FA and EMT protein expression. Conclusion MGAT5 catalysing multibranched N-glycans is a critical regulators of stiffness induced invasion and GSCs mechanotransduction, underpinning MGAT5 as a serious target to treat cancer.


2021 ◽  
Vol 9 (3) ◽  
pp. 334
Author(s):  
Jianxin Hu ◽  
Qing Xiao ◽  
Ruoxin Li

A multi-body system model is proposed for the mimicking of swimming fish with coupled active and passive movements. The relevant algorithms of the kinematics and dynamics of the multi-body system and coupled fluid solver are developed and fully validated. A simplified three-body model is applied for the investigation of the hydrodynamic performance of both an active pitch motion and passive movement. In general, there is an optimal stiffness, under which the model swims with the fastest velocity. The effect of the damper can be drawn only when the stiffness is small. Comparing with the rigid tail, the flexible tail leads to a faster speed when the stiffness and damping coefficients are in a suitable range.


Author(s):  
Xiaoyan Lei ◽  
Xinya Zhang ◽  
Kun Luo

Vibration and noise problems of elevated track bridge structures are becoming increasingly prominent. In order to effectively control the low-frequency vibration response of the track box girder structure. Firstly, the controlled mode is confirmed through modal analysis of the box girder. The optimal stiffness, damping and attaching position of the tuned mass dampers are obtained based on the fixed-point theory and the identification method of equivalent quality for multi-degree-of-freedom system. Then, based on the vehicle-track-bridge coupling dynamic model, the control effectiveness of tuned mass dampers to low-frequency vibration of the track box girder structure under train moving load is discussed. The results show that the reasonable multi-mode modal tuned mass dampers combination can effectively suppress the low-frequency vibrations of the box-girder, and the vibration levels in the frequency bands 5–10 Hz and 20–31.5 Hz near the natural frequency are significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document