Fragile X mental retardation: Misregulation of protein synthesis in the developing brain?

2002 ◽  
Vol 57 (3) ◽  
pp. 145-147 ◽  
Author(s):  
Yue Feng
Author(s):  
Ying Yang ◽  
Yang Geng ◽  
Dongyun Jiang ◽  
Lin Ning ◽  
Hyung Joon Kim ◽  
...  

Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. FXS is caused by loss of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates translation of numerous mRNA targets, some of which are present at synapses. While protein synthesis deficits have long been postulated as an etiology of FXS, how FMRP loss affects distributions of newly synthesized proteins is unknown. Here we investigated the role of FMRP in regulating expression of new copies of the synaptic protein PSD95 in an in vitro model of synaptic plasticity. We find that local BDNF application promotes persistent accumulation of new PSD95 at stimulated synapses and dendrites of cultured neurons, and that this accumulation is absent in FMRP-deficient mouse neurons. New PSD95 accumulation at sites of BDNF stimulation does not require known mechanisms regulating FMRP–mRNA interactions but instead requires the PI3K-mTORC1-S6K1 pathway. Surprisingly, in FMRP-deficient neurons, BDNF induction of new PSD95 accumulation can be restored by mTORC1-S6K1 blockade, suggesting that constitutively high mTORC1-S6K1 activity occludes PSD95 regulation by BDNF and that alternative pathways exist to mediate induction when mTORC1-S6K1 is inhibited. This study provides direct evidence for deficits in local protein synthesis and accumulation of newly synthesized protein in response to local stimulation in FXS, and supports mTORC1-S6K1 pathway inhibition as a potential therapeutic approach for FXS.


2019 ◽  
Author(s):  
Mehdi Eshraghi ◽  
Pabalu Karunadharma ◽  
Juliana Blin ◽  
Neelam Shahani ◽  
Emiliano Ricci ◽  
...  

AbstractThe regulators that stall ribosome translocation are poorly understood. We find that polyglutamine-expanded mutant Huntingtin (mHtt), the Huntington’s disease (HD) causing protein, promotes ribosome stalling and physiologically suppresses protein synthesis. A comprehensive, genome-wide analysis of ribosome footprint profiling (Ribo-Seq) revealed widespread ribosome stalling on mRNA transcripts and a shift in the distribution of ribosomes toward the 5’ end, with single-codon unique pauses on selected mRNAs in HD cells. In Ribo-Seq, we found fragile X mental retardation protein (FMRP), a known regulator of ribosome stalling, translationally upregulated and it co-immunoprecipitated with mHtt in HD cells and postmortem brain. Depletion of FMRP gene, Fmr1, however, did not affect the mHtt-mediated suppression of protein synthesis or ribosome stalling in HD cells. Consistent with this, heterozygous deletion of Fmr1 in Q175FDN-Het mouse model, Q175FDN-Het; Fmr1+/–, showed no discernable phenotype, but a subtle deficit in motor skill learning. On the other hand, depletion of mHtt, which binds directly to ribosomes in an RNase-sensitive manner, enhanced global protein synthesis, increased ribosome translocation and decreased stalling. This mechanistic knowledge advances our understanding of the inhibitory role of mHtt in ribosome translocation and may lead to novel target(s) identification and therapeutic approaches that modulate ribosome stalling in HD.One Sentence SummaryHuntington’s disease (HD) protein, mHtt, binds to ribosomes and affects their translocation and promotes stalling independent of the fragile X mental retardation protein.


2006 ◽  
Vol 95 (5) ◽  
pp. 3291-3295 ◽  
Author(s):  
Elena D. Nosyreva ◽  
Kimberly M. Huber

Fragile X syndrome (FXS), a form of human mental retardation, is caused by loss of function mutations in the fragile X mental retardation gene ( FMR1). The protein product of FMR1, fragile X mental retardation protein (FMRP) is an RNA-binding protein and may function as a translational suppressor. Metabotropic glutamate receptor–dependent long-term depression (mGluR-LTD) in hippocampal area CA1 is a form of synaptic plasticity that relies on dendritic protein synthesis. mGluR-LTD is enhanced in the mouse model of FXS, Fmr1 knockout (KO) mice, suggesting that FMRP negatively regulates translation of proteins required for LTD. Here we examine the synaptic and cellular mechanisms of mGluR-LTD in KO mice and find that mGluR-LTD no longer requires new protein synthesis, in contrast to wild-type (WT) mice. We further show that mGluR-LTD in KO and WT mice is associated with decreases in AMPA receptor (AMPAR) surface expression, indicating a similar postsynaptic expression mechanism. However, like LTD, mGluR-induced decreases in AMPAR surface expression in KO mice persist in protein synthesis inhibitors. These results are consistent with recent findings of elevated protein synthesis rates and synaptic protein levels in Fmr1 KO mice and suggest that these elevated levels of synaptic proteins are available to increase the persistence of LTD without de novo protein synthesis.


2009 ◽  
Vol 101 (5) ◽  
pp. 2572-2580 ◽  
Author(s):  
Jing Zhang ◽  
Lingfei Hou ◽  
Eric Klann ◽  
David L. Nelson

Fragile X syndrome (FXS) is the most common form of inherited mental retardation. The syndrome results from the absence of the fragile X mental retardation protein (FMRP), which is encoded by the fragile X mental retardation 1 ( FMR1) gene. FMR1 and its two paralogs, fragile X–related genes 1 and 2 ( FXR1 and -2), form the Fmr1 gene family. Here, we examined long-lasting synaptic plasticity in Fmr1 knockout, Fxr2 knockout, and Fmr1/ Fxr2 double knockout mice. We found that metabotropic glutamate receptor–dependent long-term depression (mGluR-LTD) in the hippocampus was affected in Fmr1 knockout, Fxr2 knockout, and Fmr1/ Fxr2 double knockout mice at young ages (4–6 wk old). In addition, Fmr1/ Fxr2 double knockout mice showed significant deficiencies relative to either Fmr1 or Fxr2 knockout mice in baseline synaptic transmission and short-term presynaptic plasticity, suggesting FMRP and FXR2P may contribute in a cooperative manner to pathways regulating presynaptic plasticity. However, compared with wild-type littermates, late-phase long-term potentiation (L-LTP) was unaltered in all knockout mice at 4–6 mo of age. Interestingly, although Fmr1/ Fxr2 double knockout mice exhibited a more robust enhancement in mGluR-LTD compared with that in Fmr1 knockout mice, Fxr2 knockout mice exhibited reduced mGluR-LTD. Furthermore, unlike Fmr1 knockout mice, mGluR-LTD in Fxr2 knockout mice required new protein synthesis, whereas mGluR-LTD in Fmr1/ Fxr2 double knockout mice was partially dependent on protein synthesis. These results indicated that both FMRP and FXR2P function in synaptic plasticity and that they likely operate in related but independent pathways.


Sign in / Sign up

Export Citation Format

Share Document