Identification of novel, non‐edible oil seeds via scanning electron microscopy as potential feedstock for green synthesis of biodiesel

Author(s):  
Rozina ◽  
Mushtaq Ahmad ◽  
Muhammad Zafar ◽  
Zainab Yousaf ◽  
Sher Aman Ullah ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Toga Khalid Mohamed ◽  
Marivt Osman Widdatallah ◽  
Maida Musa Ali ◽  
Afraa Mubarak Alhaj ◽  
DhiaEldin AbdElmagied Elhag

An extremely worrying and alarming increase in the level of multiple drug resistance is reported in Sudan, in which bacterial strains are becoming resistant to many commonly available antibiotics. Eventually, it is becoming extremely difficult to treat debilitating infections. In search of promising solutions to this arising crisis, Camellia sinensis silver nanoparticles were synthesized using the green synthesis method. The synthesis of the Camellia sinensis silver nanoparticles is confirmed using analytical methods as ultraviolet-visible spectroscopy, X-ray diffractometer, and scanning electron microscopy. Using the ultraviolet-visible spectroscopy, an absorption band of 412 nm was observed. Furthermore, scanning electron microscopy revealed the presence of silver nanoparticles which fell within the range of 1–100 nm, and X-ray diffractometer analysis showed three intense peaks with a maximum intense peak at 24.3 theta. Nanoparticles distribution between 12 nm and 64 nm was observed with an average diameter of 18.115 nm. It also revealed orthorhombic-shaped nanoparticles. The synthesized nanoparticles showed antimicrobial activity against Staphylococcus aureus with a zone of inhibition of 7 mm, but none was detected against Escherichia coli. The obtained physicochemical properties were correlated with the antibacterial activity of the silver nanoparticles.


2019 ◽  
Vol 83 (2) ◽  
pp. 165-175
Author(s):  
Sumreen Dawood ◽  
Mushtaq Ahmad ◽  
Muhammad Zafar ◽  
Muhammad I. Ali ◽  
Khalid Ahmad ◽  
...  

2019 ◽  
Vol 82 (7) ◽  
pp. 1165-1173 ◽  
Author(s):  
Mamoona Munir ◽  
Mushtaq Ahmad ◽  
Amir Waseem ◽  
Muhammad Zafar ◽  
Muhammad Saeed ◽  
...  

2017 ◽  
Vol 5 (2) ◽  
pp. 168-171 ◽  
Author(s):  
Janetha D Prakash Prakash ◽  
David Samuel P

The aim of this study was to synthesis of Silver Nanoparticles in the ethanol extract of Boucerosia procumbens. Nanoparticles are being used in many commercial applications. The synthesized Silver Nanoparticles were characterized by SEM (Scanning Electron Microscopy). It was found that ethanol silver iron can be reduced by ethanol plant extracts of plant to generate to extremely stable Silver Nanoparticles.Int. J. Appl. Sci. Biotechnol. Vol 5(2): 168-171


2014 ◽  
Vol 1618 ◽  
pp. 241-246 ◽  
Author(s):  
M.A. Martínez Gómez ◽  
M.C. González Chávez ◽  
J.C. Mendoza Hernández ◽  
R. Carrillo González

ABSTRACTChemical and biological deterioration of surfaces of historic constructions is one of the main causes of destruction of cultural heritage buildings. Effective techniques are searched in order to control the biofilm development of cultural heritage without damaging the environment. Nanotechnology is an emerging option with several applications, including those for improving stability and corrosion resistance in surfaces. Production of nanomaterials from organic nature or green synthesis offers ecological advantages such as low environmental impact. This paper proposes the use of silver nanoparticles of biological synthesis as an alternative for control of microorganisms that cause biodeterioration. The present study highlights the effect of these nanoparticles in the inhibition of bacterial growth. These particles were produced by biological synthesis with Tecoma stans L. extracts. Their characterization included analysis UV / Vis spectroscopy, scanning electron microscopy (SEM) and particle size distribution.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Sign in / Sign up

Export Citation Format

Share Document