Multifunctional leather surface embedded with zinc oxide nanoparticles by pulsed laser ablation method

Author(s):  
Fowzia S. Alamro ◽  
Arafat Toghan ◽  
Hoda A. Ahmed ◽  
Ayman M. Mostafa ◽  
Abbas I. Alakhras ◽  
...  
2016 ◽  
Vol 880 ◽  
pp. 110-113 ◽  
Author(s):  
Suha I. Al-Nassar ◽  
Adel K. Mahmoud ◽  
Furat I. Hussein

This work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accompanied with decreasing the liquid level above the target due to the increase in ablation rate and particles production. This blue shift indicates getting a smaller size of nanoparticles and the quantum confinement property of nanoparticles. Also the FTIR transmittance spectra of ZnO2 nanoparticles prepared in these states show a characteristic ZnO absorption at 435 cm−1 – 445 cm−1.


2004 ◽  
Vol 847 ◽  
Author(s):  
Takeshi Sasaki ◽  
Changhao Liang ◽  
Hiroyuki Usui ◽  
Yoshiki Shimizu ◽  
Naoto Koshizaki

ABSTRACTHybrid organic/inorganic nanocomposites composed of zinc hydroxide and surfactant molecule, and/or zinc oxide nanoparticles were fabricated using pulsed laser ablation of zinc in aqueous solutions of various surfactants. A Zn plate was ablated by a pulsed Nd:YAG laser in four types of surfactant solutions with different concentrations. Zinc oxide nanoparticles with average diameter of 10–40 nm were obtained in cationic, amphoteric and nonionic surfactant solutions. Unique layered organic/inorganic nanocomposites composed of zinc hydroxide layers and surfactant molecules were obtained in aqueous solutions of the anionic surfactants, sodium alkyl sulfate (CnH2n+1SO4-·Na+). The carbon number, n, in the alkyl sulfate family is very important for the formation and structure of the layered nanocomposites. The layered organic/inorganic nanocomposite can be obtained only in the specific sodium alkyl sulfates (n = 12, 13, 14 and 16) and the layer spacing of the nanocomposites increased with n from 26.8 Å to 42.0 Å. It is shown that the structures of ZnO nanoparticles and layered organic/inorganic nanocomposites can be controlled by the type of surfactants in solution.


2020 ◽  
Vol 2 (2) ◽  
pp. 102-106
Author(s):  
Fatkhiyatus Saadah ◽  
Rizka Zakiyatul Miskiyah ◽  
Ali Khumaeni

Synthesis of zinc oxide nanoparticles by pulse laser ablation method has been successed carried out. Synthesis was carried out in aquades medium with a repetition rate variation of 5 Hz, 10 Hz and 15 Hz pulse laser yielding brown colloids. The higher laser repetition rate, the colloidal color will be more dark brown. Characterization of zinc oxide nanoparticles includes UV-Vis, SEM-EDX, FTIR and XRD. The image of SEM shows that zinc oxide nanoparticles have a round shape. Measurement of particle distribution with imageJ software from SEM images showed that ZnO nanoparticles were 23.63 nm, 12.13 nm and 5.59 nm for 5 Hz, 10 Hz and 15 Hz shots. The EDX spectrum analysis results show that only Zn and O atoms in the ZnO nanoparticles colloid are synthesized. FTIR results showed that sprocket ZnO was formed at wave number 457 cm-1 and 545 cm-1. The XRD analysis results also show some peaks known as the ZnO phase. This indicates that ZnO nanoparticles have been formed. The testing of the antibacterial activity of ZnO nanoparticles using a liquid dilution method with nanoparticle concentrations of 40 ppm, 60 ppm and 80 ppm. The test results showed the percentage of degradation of Escherichia coli bacteria at concentrations of 40 ppm, 60 ppm and 80 ppm respectively at 89.60%, 97.76% and 98, 70%.


2021 ◽  
Author(s):  
Husam Aldin A. Abdul Amir ◽  
Makram A Fakhri ◽  
Ali. A. Alwahib ◽  
Evan T. Salim

Abstract This study involves synthesizing gallium nitride (GaN) nanoparticles (NPs) under six different ablation energies using the pulsed laser ablation method. The nanoparticle was deposited using drop cast method on a quartz substrate. XRD pattern shows two peaks of h-GaN nanoparticles at 2θ = 34.64 and 37.98, reflected from (002) and (100) planes. The morphological properties indicate the hexagonal crystal nature of GaN that shows in the XRD pattern. Photoluminescence (PL) spectra show the highest laser power, 2000 mj has a minor emission peaked at 3.34 eV. The maximum emission peak 3.83 eV at 1400 mJ. The study depends on the pulsed laser to generate nanoparticles with different characteristics.


1998 ◽  
Vol 127-129 ◽  
pp. 398-402 ◽  
Author(s):  
T. Sasaki ◽  
S. Terauchi ◽  
N. Koshizaki ◽  
H. Umehara

Sign in / Sign up

Export Citation Format

Share Document