quartz substrate
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 92)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Harriman Razman ◽  
Azmi Awang Md Isa ◽  
Mohamad Kadim Suaidi ◽  
Mohd Azizi Chik

A reticle is a stencil used in lithography process for forming integrated circuit (IC) on silicon substrate. It consists of a thin (100 nm) coating of masking metallic patterned (features) with critical dimension (CD) of nanometers on a thicker quartz substrate. The features can be damaged by electrostatic discharge (ESD) when exposed to the environment electrostatic charge and caused deformed IC and eventually device difunctional. Semiconductor equipment materials industry (SEMI) standard established the allowable electrostatic charge on reticle based on the characterization of ESD threshold voltage on binary reticle. However, there is another type of reticle which is phase-shift mask (PSM), has not been characterized for its ESD threshold voltage. A direct current (DC) voltage is applied directly to the structures with CD of 80 nm, 110 nm, and 160 nm. The surface current is recorded at all levels of stress from 1 to 100 V. The current–voltage (IV) curve and physical inspection results for each cell are then reviewed and classified. The results yielded which no electric field induced migration (EFM) defect and breakdown voltage occurred at any of the structures. The cathode’s metal work function has been identified as the factor that influences the PSM reticle ESD threshold voltage.


2022 ◽  
Vol 130 (2) ◽  
pp. 242
Author(s):  
Л.В. Григорьев ◽  
А.А. Семенов ◽  
А.В. Михайлов

Presents the results of the study of the structural, optical and photo luminescent properties of the thin films ZnO on LiNbO3 substrate. The results of X-ray structural analysis of a zinc oxide film synthesized on a single-crystal LiTaO3 substrate and on a KU-1 quartz substrate are presented. Present the transmission spectra, reflection spectra and the spectral dependence of zinc oxide thin films on substrate LiTaO3 and the structure of ZnO-SiO2 in the ultraviolet and visible spectral ranges.


2021 ◽  
Author(s):  
Arisara Panthawan ◽  
Nidchamon Jumrus ◽  
Panupong Sanmuangmoon ◽  
Winai Thongpan ◽  
Tewasin Kumpika ◽  
...  

Abstract Copper-iron (Cu-Fe) oxide composite films were successfully deposited on quartz substrate by a facile sparking process. The nanoparticles were deposited on the substrate after sparking off the Fe and Cu tips with different ratios and were then annealed at different temperatures. The network particles was observed after annealed the film at 700°C. Meanwhile, XRD and SAED patterns of the annealed films at 700°C consisted of a mixed phase of CuO, γ-Fe2O3, CuFe2O4 and CuFe2O. The film with a lowest energy band gap (Eg) of 2.56 eV was observed after anneal at 700°C. Interestingly, the optimum ratio and annealing temperature show highly photocatalytic activity than annealed TiO2 at 500 and 700°C. This is a novel photocatalyst which can be replace TiO2 for photocatalytic applications in the future.


2021 ◽  
pp. 3901-3910
Author(s):  
Ghaith H. Jihad

In this paper, ferric oxide nanoparticles) Fe2O3 NPs( were synthesized directly on a quartz substrate in vacuum by pulse laser deposition technique using Nd:YAG laser at different energies (171, 201,363 mJ/pulse). The slides were then heated to 700o C for 1 hour. The structural, optical, morphological, and electrical properties were studied. The optical properties indicated that the prepared thin films have an energy gap ranging from 2.28 to 2.04 eV. The XRD results showed no lattice impurities for other iron oxide phases, confirming that all particles were transformed into the α-Fe2O3 phase during the heating process. The AFM results indicated the dependence of nanoparticles size on the laser energy. As the laser energy increased, the average grain size increased from 72.6 nm to 79.02 nm. Hall effect measurement indicated that the film was an n-type semiconductor.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1452
Author(s):  
Potejana Potejanasak

In this study, an efficient nanofabrication process of metal microdisk arrays using direct imprinting was developed. This process was comprised of three steps; sputter etching on the quartz glass substrate, gold thin film deposition on an etched surface of a substrate, and transfer imprinting using a polyethylene terephthalate (PET) film mold on the Au thin film. A new idea to utilize a PET film mold for disk patterning by the nano transfer imprinting was examined. The PET film mold was prepared by thermally embossing the pillar pattern of a master mold on the PET film. The master mold was prepared from a silicon wafer. The PET film mold was used for transfer imprinting on a metal film deposited on a quartz substrate. The experimental results revealed that the PET film mold can effectively form gold micro-disk arrays on the Au film despite the PET film mold being softer than the Au film. This method can control the distribution and orientation of the nano-arrays on the disk. The plasmonic properties of the gold micro-disk arrays are studied and the absorbance spectrum exhibit depends on the distribution and orientation of gold micro-disk patterns. The nano-transfer imprinting technique is useful for fabricating metallic microdisk arrays on substrate as a plasmonic device.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1435
Author(s):  
Kaneez Fatima ◽  
Hadia Noor ◽  
Adnan Ali ◽  
Eduard Monakhov ◽  
Muhammad Asghar

Over the past few years, thermoelectrics have gained interest with regard to thermoelectricity interconversion. The improvement in the efficiency of the thermoelectric material at an ambient temperature is the main problem of research. In this work, silicon–germanium (SiGe) thin films, owing to superior properties such as nontoxicity, high stability, and their integrability with silicon technologies, were studied for thermoelectric applications. P-type SiGe thin films were deposited on quartz substrates by DC/RF magnetron sputtering and annealed at three different temperatures for 1 hour. Significant enhancement in the Seebeck coefficient was achieved for the sample annealed at 670 °C. A high power factor of 4.1 μWcm−1K−2 was obtained at room temperature.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1391
Author(s):  
Taejun Park ◽  
Kyunghwan Kim ◽  
Jeongsoo Hong

In this study, β-Ga2O3 films were fabricated on a quartz substrate by the sol–gel method using different drying temperatures and solutions of different molar concentrations, and their structural, optical, and electrical properties were evaluated. The as-fabricated films exhibited a monoclinic β-Ga2O3 crystal structure, whose crystallinity and crystallite size increased with increasing molar concentration of the solutions used and increasing drying temperature. Scanning electron microscopy of the as-prepared samples revealed dense surface morphologies and that the thickness of the films also depended on the deposition conditions. The average transmittance of all the samples was above 8% in visible light, and the calculated optical bandgap energy was 4.9 eV. The resistivity measured using a 4-point probe system was 3.7 × 103 Ω cm.


Author(s):  
Junko Fujihara ◽  
Naoki Nishimoto

Gallium antimonide (GaSb)-based devices operate efficiently in the infrared region. Investigating the toxicity of GaSb thin film is necessary for using embedded GaSb-based devices in living organisms. In this study, viability, oxidative stress, inflammatory responses, apoptosis induction and genotoxicity of GaSb were assayed using L929 cells following a 24 h exposure to GaSb. GaSb thin films were deposited on a quartz substrate using radio frequency (RF) magnetron sputtering. These films were soaked in cell culture medium to prepare test solutions. The viability of cells treated with the GaSb extract was lower than that of control cells. GaSb elicited little reactive oxygen species (ROS) generation. Tumor necrosis factor (TNF)-[Formula: see text] and interleukin (IL)-1[Formula: see text] levels were elevated in GaSb-treated cell culture supernatants. Apoptosis and genotoxicity were not evident following GaSb treatment. Overall, these results demonstrate the low toxicity of GaSb compared with previous studies examining arsenic-containing III–V materials, which is desirable for biological devices.


Sign in / Sign up

Export Citation Format

Share Document