scholarly journals Zinc Oxide Nanoparticles (ZnONPs) Photocatalyst using Pulse Laser Ablation Method for Antibacterial in Water Polluted

2020 ◽  
Vol 2 (2) ◽  
pp. 102-106
Author(s):  
Fatkhiyatus Saadah ◽  
Rizka Zakiyatul Miskiyah ◽  
Ali Khumaeni

Synthesis of zinc oxide nanoparticles by pulse laser ablation method has been successed carried out. Synthesis was carried out in aquades medium with a repetition rate variation of 5 Hz, 10 Hz and 15 Hz pulse laser yielding brown colloids. The higher laser repetition rate, the colloidal color will be more dark brown. Characterization of zinc oxide nanoparticles includes UV-Vis, SEM-EDX, FTIR and XRD. The image of SEM shows that zinc oxide nanoparticles have a round shape. Measurement of particle distribution with imageJ software from SEM images showed that ZnO nanoparticles were 23.63 nm, 12.13 nm and 5.59 nm for 5 Hz, 10 Hz and 15 Hz shots. The EDX spectrum analysis results show that only Zn and O atoms in the ZnO nanoparticles colloid are synthesized. FTIR results showed that sprocket ZnO was formed at wave number 457 cm-1 and 545 cm-1. The XRD analysis results also show some peaks known as the ZnO phase. This indicates that ZnO nanoparticles have been formed. The testing of the antibacterial activity of ZnO nanoparticles using a liquid dilution method with nanoparticle concentrations of 40 ppm, 60 ppm and 80 ppm. The test results showed the percentage of degradation of Escherichia coli bacteria at concentrations of 40 ppm, 60 ppm and 80 ppm respectively at 89.60%, 97.76% and 98, 70%.

Author(s):  
Fowzia S. Alamro ◽  
Arafat Toghan ◽  
Hoda A. Ahmed ◽  
Ayman M. Mostafa ◽  
Abbas I. Alakhras ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
pp. 79
Author(s):  
Nurul Hikmantiyah ◽  
Eko Hidayanto ◽  
Ali Khumaeni

Synthesis of zinc oxide nanoparticles, iron oxide nanoparticles and Zn-Fe nanoparticles using pulse laser ablation method has been conducted. Experimentally, a pulse Nd:YAG laser (1064 nm, 7 ns, 35 mJ) was directed and focused on a metal plates of pure Zn and Fe, which are placed in the liquid medium of polyvinyl pyrrolidone (PVP). The PVP functions as a stabilizer agent. The results show that the produced nanoparticles have a spherical shape with an averaged diameter of Zn-Fe nanoparticles of 13 nm. FTIR and XRD test results of Zn-Fe nanoparticles show characteristics of Zn-Fe compounds. The examination of Zn-Fe nanoparticles as MRI contrast agents was carried out by varying the concentration of nanoparticles. Cenh calculation results showed the highest contrast enhancement occurred at a concentration of 1.25 mM with a value of 64.26% for T1 weighted images, and 81.52% for T2 weighted images. The SNR calculation results show the highest value at a concentration of 1.25 mM of 70.52 for T1 weighted images. The highest SNR value in the T2 weighted image at a concentration of 0.156 mM of 165.09.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36845-36857 ◽  
Author(s):  
Tingting Ren ◽  
Jie Wang ◽  
Jinfeng Yuan ◽  
Mingwang Pan ◽  
Gang Liu ◽  
...  

P(VC-co-AAEM)/ZnO nanoparticles are prepared by a nano-coating method, and the morphology of the raspberry-like particles is adjusted by hydrophilicity and NaOH concentration.


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


2018 ◽  
Vol 20 (8) ◽  
pp. 5771-5779 ◽  
Author(s):  
Yanmei Sun ◽  
Dianzhong Wen ◽  
Xuduo Bai

Nonvolatile ternary memory devices were fabricated from the composites polymer blends containing zinc oxide (ZnO) nanoparticles.


2018 ◽  
Vol 16 (1) ◽  
pp. 556-570 ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Shaan Bibi Jaffri

AbstractHighly stable semiconducting silver doped zinc oxide nanoparticles have been synthesized via facile, biomimetic and sustainable route, through utilization of Zinc acetate dihydrate (C4H6O4Zn · 2H2O) as host, Silver nitrate (AgNO3) as dopant and phytochemicals of angiospermic medicinal plant Prunus cerasifera as the reducing agents. Synthesis of Ag doped ZnO nanoparticles was done in a one pot synthetic mode by varying the amount of dopant from 0.2 – 2.0%. Synthesized photocatalyst nanoparticles were analyzed via UV-vis, FTIR, XRD and SEM. Commendable alleviation in the direct band gap i.e. 2.81 eV was achieved as a result of doping. Silver doped zinc oxide nanoparticles size ranged between 72.11 – 100 nm with rough surface morphology and higher polydispersity degree. The XRD patterns revealed the hexagonal wurtzite geometry of crystals with an average crystallite size of 2.99 nm. Persistent organic dyes Methyl Orange, Safranin O and Rhodamine B were sustainably photodegraded in direct solar irradiance with remarkable degradation percentages up to 81.76, 74.11 and 85.52% in limited time with pseudo first order reaction kinetics (R2 =0.99, 0.99 and 0.97). Furthermore, efficient inhibition against nine microbes of biomedical and agriculturally significance was achieved. Synthesized nanoparticles are potential green remediators of polluted water and perilous pathogens.


Sign in / Sign up

Export Citation Format

Share Document