Agricultural soils of the animas river watershed after the gold king mine spill: an elemental spatiotemporal analysis via portable x‐ray fluorescence spectroscopy

Author(s):  
Gaurav Jha ◽  
Swagata Mukhopadhyay ◽  
April L. Ulery ◽  
Kevin Lombard ◽  
Somsubhra Chakraborty ◽  
...  
Soil Research ◽  
2007 ◽  
Vol 45 (8) ◽  
pp. 624 ◽  
Author(s):  
Paul J. Milham ◽  
Timothy E. Payne ◽  
Barry Lai ◽  
Rachael L. Trautman ◽  
Zhonghou Cai ◽  
...  

Plants take up cadmium (Cd) from the soil, and the concentration of Cd in some plant products is a health concern. Plant uptake of Cd is poorly predicted by its concentration in soils; consequently, there is interest in the binding and distribution of Cd in soil. Synchrotron micro-X-ray fluorescence spectroscopy (micro-XRFS) is the most sensitive method of observing this distribution. We used beam-line 2-ID-D of the Advanced Photon Source (APS), Argonne, to test whether this technique could map the Cd distribution in 5 soils from Greater Sydney that contained 0.3–6.4 mg Cd/kg. A subsample of one soil was spiked to contain ~100 mg Cd/kg. Cadmium was readily mapped in the Cd-enriched subsample, whereas in the unamended soils, only one Cd-rich particle was found; that is, sensitivity generally limited Cd mapping. We also examined a sample of Nauru phosphorite, which was a primary source of much of the Cd in farm soils on the peri-urban fringe of Greater Sydney. The phosphorite contained ~100 mg Cd/kg and the Cd was relatively uniformly distributed, supporting the findings of an earlier study on an apatite from Africa. The micro-XRFS at beam-line 2-ID-D of the APS can be reconfigured to increase the sensitivity at least 10-fold, which may allow the distribution of Cd and its elemental associations to be mapped in particles of most agricultural soils and facilitate other spectroscopic investigations.


2021 ◽  
Vol 232 (7) ◽  
Author(s):  
Gaurav Jha ◽  
April L. Ulery ◽  
Kevin Lombard ◽  
Dawn VanLeeuwen ◽  
Colby Brungard ◽  
...  

AbstractThe Animas River provides irrigation water in northwestern New Mexico and the Navajo Nation. Concerns regarding the river water quality arose on August 5, 2015, when approximately 11.35 million liters of heavy metal contaminated water was accidentally released from the Gold King Mine into the Animas River. This study sought to determine the total concentrations of 7 heavy metal(loid)s (As, Pb, and Zn as metals of concern and Fe, Mn, Ca, and Cu as metals of interest) using portable X-ray fluorescence (PXRF) in two agricultural fields and compare these values to Environmental Protection Agency (EPA) regional screening levels (RSL). Total concentrations of 6 out of 7 metals were below the RSL; only As exceeded the soil screening value of 7.07 mg kg−1 at some locations in the agricultural fields. We also determined water-soluble (WS) and exchangeable fractions (Ex) of As that might be available for agricultural crop uptake using sequential extractions. The WS-As ranged from 0.014 to 0.074 mg kg−1 and Ex-As ranged from 0.135 to 0.248 mg kg−1 and thus were less than 1 and 3% of the total As concentration respectively (ranging from 5.62 to 14.79 mg kg−1) and not considered a threat for plant tissue accumulation. While the concentrations of As observed in the agricultural fields may have exceeded screening levels, the As was not apparently plant available and its risk to crops was determined to be low.


1999 ◽  
Author(s):  
S.E. Church ◽  
D.L. Fey ◽  
E.M. Brouwers ◽  
C.W. Holmes ◽  
Robert Blair

Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1165-1181
Author(s):  
Flavia Fiorillo ◽  
Lucia Burgio ◽  
Christine Slottved Kimbriel ◽  
Paola Ricciardi

This study presents the results of the technical investigation carried out on several English portrait miniatures painted in the 16th and 17th century by Nicholas Hilliard and Isaac Oliver, two of the most famous limners working at the Tudor and Stuart courts. The 23 objects chosen for the analysis, spanning almost the entire career of the two artists, belong to the collections of the Victoria and Albert Museum (London) and the Fitzwilliam Museum (Cambridge). A non-invasive scientific methodology, comprising of stereo and optical microscopies, Raman microscopy, and X-ray fluorescence spectroscopy, was required for the investigation of these small-scale and fragile objects. The palettes and working techniques of the two artists were characterised, focusing in particular on the examination of flesh tones, mouths, and eyes. These findings were also compared to the information written in the treatises on miniature painting circulating during the artists’ lifetime. By identifying the materials and techniques most widely employed by the two artists, this study provides information about similarities and differences in their working methods, which can help to understand their artistic practice as well as contribute to matters of attribution.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Valérie Laperche ◽  
Bruno Lemière

Portable X-ray fluorescence spectroscopy is now widely used in almost any field of geoscience. Handheld XRF analysers are easy to use, and results are available in almost real time anywhere. However, the results do not always match laboratory analyses, and this may deter users. Rather than analytical issues, the bias often results from sample preparation differences. Instrument setup and analysis conditions need to be fully understood to avoid reporting erroneous results. The technique’s limitations must be kept in mind. We describe a number of issues and potential pitfalls observed from our experience and described in the literature. This includes the analytical mode and parameters; protective films; sample geometry and density, especially for light elements; analytical interferences between elements; physical effects of the matrix and sample condition, and more. Nevertheless, portable X-ray fluorescence spectroscopy (pXRF) results gathered with sufficient care by experienced users are both precise and reliable, if not fully accurate, and they can constitute robust data sets. Rather than being a substitute for laboratory analyses, pXRF measurements are a valuable complement to those. pXRF improves the quality and relevance of laboratory data sets.


Sign in / Sign up

Export Citation Format

Share Document