Gender-Associated Mitochondrial DNA Heteroplasmy in Somatic Tissues of the Endangered Freshwater MusselUnio crassus(Bivalvia: Unionidae): Implications for Sex Identification and Phylogeographical Studies

2016 ◽  
Vol 325 (9) ◽  
pp. 610-625 ◽  
Author(s):  
Monika Mioduchowska ◽  
Agnieszka Kaczmarczyk ◽  
Katarzyna Zając ◽  
Tadeusz Zając ◽  
Jerzy Sell
Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 883-894
Author(s):  
Liqin Cao ◽  
Ellen Kenchington ◽  
Eleftherios Zouros

Abstract In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.


Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


2005 ◽  
Vol 37 (8) ◽  
pp. 873-877 ◽  
Author(s):  
Gábor Zsurka ◽  
Yevgenia Kraytsberg ◽  
Tatiana Kudina ◽  
Cornelia Kornblum ◽  
Christian E Elger ◽  
...  

2004 ◽  
Vol 140 (1) ◽  
pp. 1-11 ◽  
Author(s):  
G Tully ◽  
S.M Barritt ◽  
K Bender ◽  
E Brignon ◽  
C Capelli ◽  
...  

1998 ◽  
Vol 102 (2) ◽  
pp. 182-186 ◽  
Author(s):  
Christopher D. Gocke ◽  
Floyd A. Benko ◽  
P. K. Rogan

Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 818-824 ◽  
Author(s):  
Manuel A Garrido-Ramos ◽  
Donald T Stewart ◽  
Brent W Sutherland ◽  
Eleftherios Zouros

We have examined the mitochondrial DNA (mtDNA) content of several somatic tissues from male and female individuals of the blue mussel, Mytilus edulis. As expected from the mode of doubly uniparental inheritance (DUI) of mtDNA that is characteristic of this genus, the dominant type of mtDNA in male gonads was the male-transmitted M type. In contrast, all male somatic tissues were dominated by the female-transmitted F type. The M type could occasionally be detected in one or another tissue of a few female individuals. The findings have several implications for the operation of doubly uniparental inheritance of mitochondrial DNA, among which the most important are (i) the M genome does not have an unconditional replicative advantage over the F genome, and (ii) in contrast to "masculinization" (the process by which an F molecule assumes the role of the M genome) "feminization" (the process by which an M molecule assumes the role of the F genome) might be a rare but not impossible phenomenon.Key words: mitochondrial DNA inheritance, mitochondrial DNA tissue distribution, blue mussels, gender-specific mtDNA, doubly uniparental inheritance of mtDNA, Mytilus.


Mitochondrion ◽  
2006 ◽  
Vol 6 (5) ◽  
pp. 24-25
Author(s):  
S.L. Williams ◽  
S.R. Bacman ◽  
M.P. Bayona-Bafaluy ◽  
E.A. Shoubridge ◽  
C.T. Moraes

Sign in / Sign up

Export Citation Format

Share Document