scholarly journals Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy

2005 ◽  
Vol 37 (8) ◽  
pp. 873-877 ◽  
Author(s):  
Gábor Zsurka ◽  
Yevgenia Kraytsberg ◽  
Tatiana Kudina ◽  
Cornelia Kornblum ◽  
Christian E Elger ◽  
...  
Author(s):  
Marta Gonzalez‐Freire ◽  
A. Zenobia Moore ◽  
Charlotte A. Peterson ◽  
Kate Kosmac ◽  
Mary M. McDermott ◽  
...  

Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


1995 ◽  
Vol 4 (4) ◽  
pp. 751-754 ◽  
Author(s):  
Chunfang Zhang ◽  
Alessandra Baumer ◽  
Ian R. Mackay ◽  
Anthony W. Linnane ◽  
Phillip Nagley

1998 ◽  
Vol 275 (3) ◽  
pp. R905-R912 ◽  
Author(s):  
Brendan James Battersby ◽  
Christopher D. Moyes

Skeletal muscle fibers typically undergo modifications in their mitochondrial content, concomitant with alterations in oxidative metabolism that occur during the development of muscle fiber and in response to physiological stimuli. We examined how cold acclimation affects the mitochondrial properties of two fish skeletal muscle fiber types and how the regulators of mitochondrial content differed between tissues. After 2 mo of acclimation to either 4 or 18°C, mitochondrial enzyme activities in both red and white muscle were higher in cold-acclimated fish. No significant differences were detected between acclimation temperatures in the abundance of steady-state mitochondrial mRNA (cytochrome- c oxidase 1, subunit 6 of F0F1-ATPase), rRNA (16S), or DNA copy number. Steady-state mRNA for nuclear-encoded respiratory (adenine nucleotide translocase 1) and glycolytic genes showed high interindividual variability, particularly in the cold-acclimated fish. Although mitochondrial enzymes were 10-fold different between the two muscle types, mitochondrial DNA copy number differed only 4-fold. The relative abundance of mitochondrial mRNA and nuclear mRNA in red and white muscle reflected the differences in copy number of their respective genes. These data suggest that the response to physiological stimuli and determination of tissue-specific mitochondrial properties likely result from the regulation of nuclear-encoded genes.


2021 ◽  
Author(s):  
Bruno Marçal Repolês ◽  
Choco Michael Gorospe ◽  
Phong Tran ◽  
Anna Karin Nilsson ◽  
Paulina H. Wanrooij

AbstractThe integrity of mitochondrial DNA (mtDNA) isolated from solid tissues is critical for analyses such as long-range PCR. We show that a commonly-used DNA isolation procedure preferentially introduces strand breaks into the mtDNA extracted from the skeletal muscle of aged mice, while mtDNA from adult animals is less affected. We present a comparison of mtDNA isolation methods and identify one that avoids this biased loss of muscle mtDNA integrity. Our results highlight the importance of a careful choice of mtDNA isolation method and serve as a resource to researchers planning analysis of mtDNA isolated from solid tissues.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Liya Wang ◽  
Ren Sun ◽  
Staffan Eriksson

Abstract Background Deficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA (mtDNA) depletion. To understand the mechanisms of the tissue specific mtDNA depletion we systematically studied key enzymes in dTMP synthesis in mitochondrial and cytosolic extracts prepared from adult rat tissues. Results In addition to mitochondrial TK2 a cytosolic isoform of TK2 was characterized, which showed similar substrate specificity to the mitochondrial TK2. Total TK activity was highest in spleen and lowest in skeletal muscle. Thymidylate synthase (TS) was detected in cytosols and its activity was high in spleen but low in other tissues. TS protein levels were high in heart, brain and skeletal muscle, which deviated from TS activity levels. The p53R2 proteins were at similar levels in all tissues except liver where it was ~ 6-fold lower. Our results strongly indicate that mitochondria in most tissues are capable of producing enough dTTP for mtDNA replication via mitochondrial TK2, but skeletal muscle mitochondria do not and are most likely dependent on both the salvage and de novo synthesis pathways. Conclusion These results provide important information concerning mechanisms for the tissue dependent variation of dTTP synthesis and explained why deficiency in TK2 or p53R2 leads to skeletal muscle dysfunctions. Furthermore, the presence of a putative cytosolic TK2-like enzyme may provide basic knowledge for the understanding of deoxynucleoside-based therapy for mitochondrial disorders.


2020 ◽  
Vol 160 ◽  
pp. 680-689 ◽  
Author(s):  
Sunil K. Saini ◽  
Mary M. McDermott ◽  
Anna Picca ◽  
Lingyu Li ◽  
Stephanie E. Wohlgemuth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document