mitochondrial dna heteroplasmy
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 2)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1395
Author(s):  
A. V. Suslov ◽  
M. A. Afanasyev ◽  
P. A. Degtyarev ◽  
P. V. Chumachenko ◽  
M. Bagheri Ekta ◽  
...  

Thoracic aortic aneurysm (TAA) is a life-threatening condition associated with high mortality, in which the aortic wall is deformed due to congenital or age-associated pathological changes. The mechanisms of TAA development remain to be studied in detail, and are the subject of active research. In this review, we describe the morphological changes of the aortic wall in TAA. We outline the genetic disorders associated with aortic enlargement and discuss the potential role of mitochondrial pathology, in particular mitochondrial DNA heteroplasmy, in the disease pathogenesis.


2021 ◽  
Vol 7 (50) ◽  
Author(s):  
Haixin Zhang ◽  
Marco Esposito ◽  
Mikael G. Pezet ◽  
Juvid Aryaman ◽  
Wei Wei ◽  
...  

Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246114
Author(s):  
Shari R. Atilano ◽  
Nitin Udar ◽  
Timothy A. Satalich ◽  
Viraat Udar ◽  
Marilyn Chwa ◽  
...  

Purpose Mitochondrial (mt) DNA damage is associated with age-related macular degeneration (AMD) and other human aging diseases. This study was designed to quantify and characterize mtDNA low-frequency heteroplasmy single nucleotide polymorphisms (SNPs) of three different tissues isolated from AMD subjects using Next Generation Sequencing (NGS) technology. Methods DNA was extracted from neural retina, [RPE+choroid] and blood from three deceased age-related macular degeneration (AMD) subjects. Entire mitochondrial genomes were analyzed for low-frequency heteroplasmy SNPs using NGS technology that independently sequenced both mtDNA strands. This deep sequencing method (average sequencing depth of 30,000; range 1,000–100,000) can accurately differentiate low-frequency heteroplasmy SNPs from DNA modification artifacts. Twenty-three ‘hot-spot’ heteroplasmy mtDNA SNPs were analyzed in 222 additional blood samples. Results Germline homoplasmy SNPs that defined mtDNA haplogroups were consistent in the three tissues of each subject. Analyses of SNPs with <40% heteroplasmy revealed the blood had significantly greater numbers of heteroplasmy SNPs than retina alone (p≤0.05) or retina+choroid combined (p = 0.008). Twenty-three ‘hot-spot’ mtDNA heteroplasmy SNPs were present, with three being non-synonymous (amino acid change). Four ‘hot-spot’ heteroplasmy SNPs (m.1120C>T, m.1284T>C, m.1556C>T, m.7256C>T) were found in additional samples (n = 222). Five heteroplasmy SNPs (m.4104A>G, m.5320C>T, m.5471G>A, m.5474A>G, m.5498A>G) declined with age. Two heteroplasmy SNPs (m.13095T>C, m.13105A>G) increased in AMD compared to Normal samples. In the heteroplasmy SNPs, very few transversion mutations (purine to pyrimidine or vice versa, associated with oxidative damage) were found and the majority were transition changes (purine to purine or pyrimidine to pyrimidine, associated with replication errors). Conclusion Within an individual, the blood, retina and [RPE+choroid] contained identical homoplasmy SNPs representing inherited germline mtDNA haplogroup. NGS methodology showed significantly more mtDNA heteroplasmy SNPs in blood compared to retina and [RPE+choroid], suggesting the latter tissues have substantial protection. Significantly higher heteroplasmy levels of m.13095T>C and m.13105A>G may represent potential AMD biomarkers. Finally, high levels of transition mutations suggest that accumulation of heteroplasmic SNPs may occur through replication errors rather than oxidative damage.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Boris Rebolledo-Jaramillo ◽  
Maria Gabriela Obregon ◽  
Victoria Huckstadt ◽  
Abel Gomez ◽  
Gabriela M. Repetto

Congenital heart disease (CHD) and palatal anomalies (PA), are among the most common characteristics of 22q11.2 deletion syndrome (22q11.2DS), but they show incomplete penetrance, suggesting the presence of additional factors. The 22q11.2 deleted region contains nuclear encoded mitochondrial genes, and since mitochondrial function is critical during development, we hypothesized that changes in the mitochondrial DNA (mtDNA) could be involved in the intrafamilial variability of CHD and PA in cases of maternally inherited 22q11.2DS. To investigate this, we studied the transmission of heteroplasmic mtDNA alleles in seventeen phenotypically concordant and discordant mother-offspring 22q11.2DS pairs. We sequenced their mtDNA and identified 26 heteroplasmic variants at >1% frequency, representing 18 transmissions. The median allele frequency change between a mother and her child was twice as much, with a wider distribution range, in PA discordant pairs, p-value = 0.039 (permutation test, 11 concordant vs. 7 discordant variants), but not in CHD discordant pairs, p-value = 0.441 (9 vs. 9). Only the variant m.9507T>C was considered to be pathogenic, but it was unrelated to the structural phenotypes. Our study is novel, yet our results are not consistent with mtDNA variation contributing to PA or CHD in 22q11.2DS. Larger cohorts and additional factors should be considered moving forward.


Author(s):  
Marta Gonzalez‐Freire ◽  
A. Zenobia Moore ◽  
Charlotte A. Peterson ◽  
Kate Kosmac ◽  
Mary M. McDermott ◽  
...  

2020 ◽  
Vol 521 (4) ◽  
pp. 1024-1029
Author(s):  
Jie Li ◽  
Chunyan Xue ◽  
Qingtao Gao ◽  
Jieqiong Tan ◽  
Zhengqing Wan

Sign in / Sign up

Export Citation Format

Share Document