Efficient gene therapy based targeting system for the treatment of inoperable tumors

2012 ◽  
Vol 14 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Thomas Wirth ◽  
Jere Tuomas Pikkarainen ◽  
Haritha Dhammika Samaranayake ◽  
Pauliina Lehtolainen-Dalkilic ◽  
Hanna Pirita Lesch ◽  
...  
Keyword(s):  
2020 ◽  
Vol 20 (5) ◽  
pp. 321-332
Author(s):  
Yunbo Liu ◽  
Xu Zhang ◽  
Lin Yang

Adeno-associated virus (AAV) is a promising vector for in vivo gene therapy because of its excellent safety profile and ability to mediate stable gene expression in human subjects. However, there are still numerous challenges that need to be resolved before this gene delivery vehicle is used in clinical applications, such as the inability of AAV to effectively target specific tissues, preexisting neutralizing antibodies in human populations, and a limited AAV packaging capacity. Over the past two decades, much genetic modification work has been performed with the AAV capsid gene, resulting in a large number of variants with modified characteristics, rendering AAV a versatile vector for more efficient gene therapy applications for different genetic diseases.


2021 ◽  
Author(s):  
Moataz Dowaidar

Although gene therapy for CNS diseases shows promise in cell and animal investigations, most human trials have failed to satisfy the requisite requirements. Finding novel techniques to boost the efficacy of gene therapy in treating CNS diseases is still crucial. A growing number of clinical trials have proved the efficacy and safety of using AAV vectors, making AAV vector research a gene therapy hotspot. However, due to the presence of the BBB, many siRNA and DNA with potential therapeutic value are difficult to transport from peripheral circulation to the brain using AAV vectors, limiting the clinical impact of gene therapy drugs in the CNS and posing a major challenge to the field of CNS gene therapy. In early studies, AAV9 was considered the most effective AAV serotype for getting through the blood-brain barrier and transduction to central nervous system cells following intravenous injection. Aavrh10 isolated from rhesus monkeys was equal to, if not superior to, AAV9. AAV-PHP.B, a newly built capsid, exhibits 40-fold greater efficacy than AAV9 in astrocyte and neuron transduction. AAV-PHP.eB, a modified AAV-PHP.B variety, was identified to retain PHP.B's AAV-capacity to transduce astrocytes while enhancing neuronal transduction. While the four serotypes AAV9, AAVrh10, AAV-PHP.B, and AAV-PHP.eB have been validated to penetrate mice's BBB following intravenous injection, the number of AAV vectors that can do so is low. Moreover, the manner in which AAV vectors penetrate the BBB remains unclear. To promote efficient gene therapy for CNS diseases, it is still important to test new vectors with more efficient crossing abilities and understand their crossing processes. In addition to technical challenges, AAV vectors in treating CNS diseases may be limited by cautious attitudes to innovative treatments. Continued advances in AAV vector research, together with early clinical trial outcomes, might help researchers achieve the full potential of AAV-based CNS disease therapies.


2011 ◽  
Vol 2011 ◽  
pp. 1-2 ◽  
Author(s):  
Kiyotake Ishikawa ◽  
Dennis Ladage ◽  
Lisa Tilemann ◽  
Yoshiaki Kawase ◽  
Roger J. Hajjar

Cardiac gene therapy is one of the most promising approaches to cure patients with cardiac dysfunctions. Many ways of efficient gene transfer using viral vectors are tested, and some of them are already used in clinical settings. However, it is always important to be keenly alert to the possible complications when a new therapy is introduced. We present a case of myocardial sterile abscess in a swine model associated with a direct myocardial injection.


2021 ◽  
Author(s):  
Dashan Sun

CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. In our work, time-delayed safety switches are designed based on either artificial ultrasensitivity transmission module or intrinsic time delay in biomolecular activities. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.


1970 ◽  
Vol 3 (1) ◽  
pp. 24-27
Author(s):  
Md Manjurul Karim

The concept of gene therapy involves the transfer of genetic material into a cell, tissue, or whole organ, with a view to curing a disease or at least improving the clinical status of a patient. Much of its success relies heavily on the development of an effective delivery system that is capable of efficient gene transfer in a variety of tissues, without causing any associated pathogenic effects. Viral vectors currently offer the best choice for efficient gene delivery, what has been discussed in this review article. Their performance and pathogenecity has been evaluated in animal models, and encouraging results form the basis for clinical trials to treat genetic disorders and acquired diseases. Despite some initial success in these trials, vector development remains a seminal concern for improved gene therapy technologies. DOI: http://dx.doi.org/10.3329/akmmcj.v3i1.10110 AKMMCJ 2012; 3(1): 24-27


2020 ◽  
Vol 17 ◽  
pp. 100287
Author(s):  
H. Jia ◽  
Y. Yang ◽  
M. Li ◽  
Y. Li ◽  
X. Han ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Jinyu Sun ◽  
Jianchu Wang ◽  
Donghui Zheng ◽  
Xiaorong Hu

Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.


Oncotarget ◽  
2015 ◽  
Vol 6 (31) ◽  
pp. 30675-30703 ◽  
Author(s):  
Sergiu Chira ◽  
Carlo S. Jackson ◽  
Iulian Oprea ◽  
Ferhat Ozturk ◽  
Michael S. Pepper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document