scholarly journals Rapid postseismic relaxation after the great 2006-2007 Kuril earthquakes from GPS observations in 2007-2011

2013 ◽  
Vol 118 (7) ◽  
pp. 3691-3706 ◽  
Author(s):  
Mikhail G. Kogan ◽  
Nikolay F. Vasilenko ◽  
Dmitry I. Frolov ◽  
Jeffrey T. Freymueller ◽  
Grigory M. Steblov ◽  
...  
2010 ◽  
Vol 53 (4) ◽  
pp. 639-645 ◽  
Author(s):  
Yi-Yi WU ◽  
Zhen-Jie HONG ◽  
Peng GUO ◽  
Jie ZHENG
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
E. Mysen

AbstractA network of pointwise available height anomalies, derived from levelling and GPS observations, can be densified by adjusting a gravimetric quasigeoid using least-squares collocation. The resulting type of Corrector Surface Model (CSM) is applied by Norwegian surveyors to convert ellipsoidal heights to normal heights expressed in the official height system NN2000. In this work, the uncertainty related to the use of a CSM to predict differences in height anomaly was sought. As previously, the application of variograms to determine the local statistical properties of the adopted collocation model led to predictions that were consistent with their computed uncertainties. For the purpose of predicting height anomaly differences, the effect of collocation was seen to be moderate in general for the small spatial separations considered (< 10 km). However, the relative impact of collocation could be appreciable, and increasing with distance, near the network. At last, it was argued that conservative uncertainties of height anomaly differences may be obtained by rescaling output of a grid interpolation by \sqrt \Delta, where Δ is the spatial separation of the two locations for which the difference is sought.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mani Sivakandan ◽  
Yuichi Otsuka ◽  
Priyanka Ghosh ◽  
Hiroyuki Shinagawa ◽  
Atsuki Shinbori ◽  
...  

AbstractThe total electron content (TEC) data derived from the GAIA (Ground-to-topside model of Atmosphere Ionosphere for Aeronomy) is used to study the seasonal and longitudinal variation of occurrence of medium-scale traveling ionospheric disturbances (MSTIDs) during daytime (09:00–15:00 LT) for the year 2011 at eight locations in northern and southern hemispheres, and the results are compared with ground-based Global Positioning System (GPS)-TEC. To derive TEC variations caused by MSTIDs from the GAIA (GPS) data, we obtained detrended TEC by subtracting 2-h (1-h) running average from the TEC, and calculated standard deviation of the detrended TEC in 2 h (1 h). MSTID activity was defined as a ratio of the standard deviation to the averaged TEC. Both GAIA simulation and GPS observations data show that daytime MSTID activities in the northern and southern hemisphere (NH and SH) are higher in winter than in other seasons. From the GAIA simulation, the amplitude of the meridional wind variations, which could be representative of gravity waves (GWs), shows two peaks in winter and summer. The winter peak in the amplitude of the meridional wind variations coincides with the winter peak of the daytime MSTIDs, indicating that the high GW activity is responsible for the high MSTID activity. On the other hand, the MSTID activity does not increase in summer. This is because the GWs in the thermosphere propagate poleward in summer, and equatorward in winter, and the equatorward-propagating GWs cause large plasma density perturbations compared to the poleward-propagating GWs. Longitudinal variation of daytime MSTID activity in winter is seen in both hemispheres. The MSTID activity during winter in the NH is higher over Japan than USA, and the MSTID activity during winter in the SH is the highest in South America. In a nutshell, GAIA can successfully reproduce the seasonal and longitudinal variation of the daytime MSTIDs. This study confirms that GWs cause the daytime MSTIDs in GAIA and amplitude and propagation direction of the GWs control the noted seasonal variation. GW activities in the middle and lower atmosphere cause the longitudinal variation.


Sign in / Sign up

Export Citation Format

Share Document