scholarly journals The influence of observation errors on analysis error and forecast skill investigated with an observing system simulation experiment

2013 ◽  
Vol 118 (11) ◽  
pp. 5332-5346 ◽  
Author(s):  
N. C. Privé ◽  
R. M. Errico ◽  
K.-S. Tai
2014 ◽  
Vol 142 (5) ◽  
pp. 1823-1834 ◽  
Author(s):  
N. C. Privé ◽  
R. M. Errico ◽  
K.-S. Tai

Abstract Most rawinsondes are launched once or twice daily, at 0000 and/or 1200 UTC; only a small number of the total rawinsonde observations are taken at 0600 and 1800 UTC (“off hour” cycle times). In this study, the variations of forecast and analysis quality between cycle times and the potential improvement of skill due to supplemental rawinsonde measurements at 0600 and 1800 UTC are tested in the framework of an observing system simulation experiment (OSSE). The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA GMAO) Goddard Earth Observing System Model, version 5 (GEOS-5), is used with the GMAO OSSE setup for an experiment emulating the months of July and August with the 2011 observational network. The OSSE is run with and without supplemental rawinsonde observations at 0600 and 1800 UTC, and the differences in analysis error and forecast skill are quantified. The addition of supplemental rawinsonde observations results in significant improvement of analysis quality in the Northern Hemisphere for both the 0000/1200 and 0600/1800 UTC cycle times, with greater improvement for the off-hour times. Reduction of root-mean-square errors on the order of 1%–3% for wind and temperature is found at the 24- and 48-h forecast times. There is a slight improvement in Northern Hemisphere anomaly correlations at the 120-h forecast time.


2012 ◽  
Vol 76 (3) ◽  
pp. 441-453 ◽  
Author(s):  
Aurélie Duchez ◽  
Jacques Verron ◽  
Jean-Michel Brankart ◽  
Yann Ourmières ◽  
Philippe Fraunié

2019 ◽  
Vol 12 (7) ◽  
pp. 2899-2914
Author(s):  
Yun Liu ◽  
Eugenia Kalnay ◽  
Ning Zeng ◽  
Ghassem Asrar ◽  
Zhaohui Chen ◽  
...  

Abstract. We developed a carbon data assimilation system to estimate surface carbon fluxes using the local ensemble transform Kalman filter (LETKF) and atmospheric transport model GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological field based on the Goddard Earth Observing System model, version 5 (GEOS-5). This assimilation system is inspired by the method of Kang et al. (2011, 2012), who estimated the surface carbon fluxes in an observing system simulation experiment (OSSE) as evolving parameters in the assimilation of the atmospheric CO2, using a short assimilation window of 6 h. They included the assimilation of the standard meteorological variables, so that the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing new techniques such as “variable localization”, and increased observation weights near the surface, they obtained accurate surface carbon fluxes at grid-point resolution. We developed a new version of the local ensemble transform Kalman filter related to the “running-in-place” (RIP) method used to accelerate the spin-up of ensemble Kalman filter (EnKF) data assimilation (Kalnay and Yang, 2010; Wang et al., 2013; Yang et al., 2012). Like RIP, the new assimilation system uses the “no cost smoothing” algorithm for the LETKF (Kalnay et al., 2007b), which allows shifting the Kalman filter solution forward or backward within an assimilation window at no cost. In the new scheme a long “observation window” (e.g., 7 d or longer) is used to create a LETKF ensemble at 7 d. Then, the RIP smoother is used to obtain an accurate final analysis at 1 d. This new approach has the advantage of being based on a short assimilation window, which makes it more accurate, and of having been exposed to the future 7 d observations, which improves the analysis and accelerates the spin-up. The assimilation and observation windows are then shifted forward by 1 d, and the process is repeated. This reduces significantly the analysis error, suggesting that the newly developed assimilation method can be used with other Earth system models, especially in order to make greater use of observations in conjunction with models.


2019 ◽  
Vol 20 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Camille Garnaud ◽  
Stéphane Bélair ◽  
Marco L. Carrera ◽  
Chris Derksen ◽  
Bernard Bilodeau ◽  
...  

Abstract Because of its location, Canada is particularly affected by snow processes and their impact on the atmosphere and hydrosphere. Yet, snow mass observations that are ongoing, global, frequent (1–5 days), and at high enough spatial resolution (kilometer scale) for assimilation within operational prediction systems are presently not available. Recently, Environment and Climate Change Canada (ECCC) partnered with the Canadian Space Agency (CSA) to initiate a radar-focused snow mission concept study to define spaceborne technological solutions to this observational gap. In this context, an Observing System Simulation Experiment (OSSE) was performed to determine the impact of sensor configuration, snow water equivalent (SWE) retrieval performance, and snow wet/dry state on snow analyses from the Canadian Land Data Assimilation System (CaLDAS). The synthetic experiment shows that snow analyses are strongly sensitive to revisit frequency since more frequent assimilation leads to a more constrained land surface model. The greatest reduction in spatial (temporal) bias is from a 1-day revisit frequency with a 91% (93%) improvement. Temporal standard deviation of the error (STDE) is mostly reduced by a greater retrieval accuracy with a 65% improvement, while a 1-day revisit reduces the temporal STDE by 66%. The inability to detect SWE under wet snow conditions is particularly impactful during the spring meltdown, with an increase in spatial RMSE of up to 50 mm. Wet snow does not affect the domain-wide annual maximum SWE nor the timing of end-of-season snowmelt timing in this case, indicating that radar measurements, although uncertain during melting events, are very useful in adding skill to snow analyses.


2011 ◽  
Vol 116 (D13) ◽  
Author(s):  
Shu-Hua Chen ◽  
Jhih-Ying Chen ◽  
Wei-Yu Chang ◽  
Pay-Liam Lin ◽  
Po-Hsiung Lin ◽  
...  

2017 ◽  
Vol 145 (9) ◽  
pp. 3581-3597 ◽  
Author(s):  
L. Cucurull ◽  
R. Li ◽  
T. R. Peevey

The mainstay of the global radio occultation (RO) system, the COSMIC constellation of six satellites launched in April 2006, is already past the end of its nominal lifetime and the number of soundings is rapidly declining because the constellation is degrading. For about the last decade, COSMIC profiles have been collected and their retrievals assimilated in numerical weather prediction systems to improve operational weather forecasts. The success of RO in increasing forecast skill and COSMIC’s aging constellation have motivated planning for the COSMIC-2 mission, a 12-satellite constellation to be deployed in two launches. The first six satellites (COSMIC-2A) are expected to be deployed in December 2017 in a low-inclination orbit for dense equatorial coverage, while the second six (COSMIC-2B) are expected to be launched later in a high-inclination orbit for global coverage. To evaluate the potential benefits from COSMIC-2, an earlier version of the NCEP’s operational forecast model and data assimilation system is used to conduct a series of observing system simulation experiments with simulated soundings from the COSMIC-2 mission. In agreement with earlier studies using real RO observations, the benefits from assimilating COSMIC-2 observations are found to be most significant in the Southern Hemisphere. No or very little gain in forecast skill is found by adding COSMIC-2A to COSMIC-2B, making the launch of COSMIC-2B more important for terrestrial global weather forecasting than that of COSMIC-2A. Furthermore, results suggest that further improvement in forecast skill might better be obtained with the addition of more RO observations with global coverage and other types of observations.


2018 ◽  
Vol 35 (2) ◽  
pp. 281-297 ◽  
Author(s):  
Jinbo Wang ◽  
Lee-Lueng Fu ◽  
Bo Qiu ◽  
Dimitris Menemenlis ◽  
J. Thomas Farrar ◽  
...  

AbstractThe wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.


2011 ◽  
Vol 139 (8) ◽  
pp. 2309-2326 ◽  
Author(s):  
Jason A. Otkin ◽  
Daniel C. Hartung ◽  
David D. Turner ◽  
Ralph A. Petersen ◽  
Wayne F. Feltz ◽  
...  

AbstractIn this study, an Observing System Simulation Experiment was used to examine how the assimilation of temperature, water vapor, and wind profiles from a potential array of ground-based remote sensing boundary layer profiling instruments impacts the accuracy of atmospheric analyses when using an ensemble Kalman filter data assimilation system. Remote sensing systems evaluated during this study include the Doppler wind lidar (DWL), Raman lidar (RAM), microwave radiometer (MWR), and the Atmospheric Emitted Radiance Interferometer (AERI). The case study tracked the evolution of several extratropical weather systems that occurred across the contiguous United States during 7–8 January 2008. Overall, the results demonstrate that using networks of high-quality temperature, wind, and moisture profile observations of the lower troposphere has the potential to improve the accuracy of wintertime atmospheric analyses over land. The impact of each profiling system was greatest in the lower and middle troposphere on the variables observed or retrieved by that instrument; however, some minor improvements also occurred in the unobserved variables and in the upper troposphere, particularly when RAM observations were assimilated. The best analysis overall was achieved when DWL wind profiles and temperature and moisture observations from the RAM, AERI, or MWR were assimilated simultaneously, which illustrates that both mass and momentum observations are necessary to improve the analysis accuracy.


Sign in / Sign up

Export Citation Format

Share Document