observing system simulation experiment
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 15 (1) ◽  
pp. 45-73
Author(s):  
Andrew Zammit-Mangion ◽  
Michael Bertolacci ◽  
Jenny Fisher ◽  
Ann Stavert ◽  
Matthew Rigby ◽  
...  

Abstract. WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchical statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the conventional Bayesian synthesis framework through the consideration of a correlated error term, the capacity for online bias correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed biased and have errors that are spatio-temporally correlated. Using the GEOS-Chem atmospheric transport model, we show that WOMBAT is able to obtain posterior means and variances on non-fossil-fuel CO2 fluxes from Orbiting Carbon Observatory-2 (OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019). We also find that WOMBAT's predictions of out-of-sample retrievals obtained from the Total Column Carbon Observing Network (TCCON) are, for the most part, more accurate than those made by the MIP participants.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1672
Author(s):  
Fang-Ching Chien ◽  
Yen-Chao Chiu

This paper presents an observing system simulation experiment (OSSE) study to examine the impact of dropsonde data assimilation (DA) on rainfall forecasts for a heavy rain event in Taiwan. The rain event was associated with strong southwesterly flows over the northern South China Sea (SCS) after a weakening tropical cyclone (TC) made landfall over southeastern China. With DA of synthetic dropsonde data over the northern SCS, the model reproduces more realistic initial fields and a better simulated TC track that can help in producing improved low-level southwesterly flows and rainfall forecasts in Taiwan. Dropsonde DA can also aid the model in reducing the ensemble spread, thereby producing more converged ensemble forecasts. The sensitivity studies suggest that dropsonde DA with a 12-h cycling interval is the best strategy for deriving skillful rainfall forecasts in Taiwan. Increasing the DA interval to 6 h is not beneficial. However, if the flight time is limited, a 24-h interval of DA cycling is acceptable, because rainfall forecasts in Taiwan appear to be satisfactory. It is also suggested that 12 dropsondes with a 225-km separation distance over the northern SCS set a minimum requirement for enhancing the model regarding rainfall forecasts. Although more dropsonde data can help the model to obtain better initial fields over the northern SCS, they do not provide more assistance to the forecasts of the TC track and rainfall in Taiwan. These findings can be applied to the future field campaigns and model simulations in the nearby regions.


Author(s):  
Likun Wang ◽  
Narges Shahroudi ◽  
Eric Maddy ◽  
Kevin Garrett ◽  
Sid Boukabara ◽  
...  

AbstractDeveloped at the National Oceanic and Atmospheric Administration (NOAA) and the Joint Center for Satellite Data Assimilation (JCSDA), the Community Global Observing System Simulation Experiment (OSSE) Package (CGOP) provides a vehicle to quantitatively evaluate the impacts of emerging environmental observing systems or emerging in-situ or remote sensing instruments on NOAA numerical weather prediction (NWP) forecast skill. The typical first step for the OSSE is to simulate observations from the so-called “nature run”. Therefore, the observation spatial, temporal, and view geometry are needed to extract the atmospheric and surface variables from the nature run, which are then input to the observation forward operator (e.g., radiative transfer models) to simulate the new observations. This is a challenge for newly proposed systems for which instruments are not yet built or platforms are not yet deployed. To address this need, this study introduces an orbit simulator to compute these parameters based on the specific hosting platform and onboard instrument characteristics, which has been recently developed by the NOAA Center for Satellite Applications and Research (STAR) and added to the GCOP framework. In addition to simulating existing polar-orbiting and geostationary orbits, it is also applicable to emerging near space platforms (e.g., stratospheric balloons), cube satellite constellations, and Tundra orbits. The observation geometry simulator includes not only passive microwave and infrared sounders but also Global Navigation Satellite System/Radio Occultation (GNSS/RO) instruments. For passive atmospheric sounders, it calculates the geometric parameters of proposed instruments on different platforms, such as time varying location (latitude and longitude), scan geometry (satellite zenith and azimuth angles), and Ground Instantaneous Field of View (GIFOV) parameters for either cross-track or conical scanning mechanisms. For RO observations, it determines the geometry of the transmitters and receivers either on satellites or stratospheric balloons and computes their slant paths. The simulator has been successfully applied for recent OSSE studies (e.g., evaluating the impacts of future geostationary hyperspectral infrared sounders and RO observations from stratospheric balloons).


2021 ◽  
Vol 14 (8) ◽  
pp. 5555-5576
Author(s):  
Mark T. Richardson ◽  
David R. Thompson ◽  
Marcin J. Kurowski ◽  
Matthew D. Lebsock

Abstract. Daytime clear-sky total column water vapour (TCWV) is commonly retrieved from visible and shortwave infrared reflectance (VSWIR) measurements, and modern missions such as the upcoming Earth Surface Mineral Dust Source Investigation (EMIT) offer unprecedented horizontal resolution of order 30–80 m. We provide evidence that for convective planetary boundary layers (PBLs), spatial variability in TCWV corresponds to variability in PBL water vapour. Using an observing system simulation experiment (OSSE) applied to large eddy simulation (LES) output, we show that EMIT can retrieve horizontal variability in PBL water vapour, provided that the domain surface is uniformly composed of either vegetated surfaces or mineral surfaces. Random retrieval errors are easily quantified and removed, but biases from −7 % to +34 % remain in retrieved spatial standard deviation and are primarily related to the retrieval's assumed atmospheric profiles. Future retrieval development could greatly mitigate these errors. Finally, we account for changing solar zenith angle (SZA) from 15 to 60∘ and show that the non-vertical solar path destroys the correspondence between footprint-retrieved TCWV and the true TCWV directly above that footprint. Even at the 250 m horizontal resolution regularly obtained by current sensors, the derived maps correspond poorly to true TCWV at the pixel scale, with r2<0.6 at SZA=30∘. However, the derived histograms of TCWV in an area are closely related to the true histograms of TCWV at the nominal footprint resolution. Upcoming VSWIR instruments, primarily targeting surface properties, can therefore offer new information on PBL water vapour spatial statistics to the atmospheric community.


2021 ◽  
Author(s):  
Andrew Zammit-Mangion ◽  
Michael Bertolacci ◽  
Jenny Fisher ◽  
Ann Stavert ◽  
Matthew L. Rigby ◽  
...  

Abstract. WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchical statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the conventional Bayesian-synthesis framework through the consideration of a correlated error term, the capacity for online bias correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed biased and have errors that are spatio-temporally correlated. Using the GEOS-Chem atmospheric transport model, we show that WOMBAT is able to obtain posterior means and variances on non-fossil-fuel CO2 fluxes from Orbiting Carbon Observatory-2 (OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019, Atmos. Chem. Phys., vol. 19). We also find that WOMBAT's predictions of out-of-sample retrievals obtained from the Total Column Carbon Observing Network are, for the most part, more accurate than those made by the MIP participants.


2021 ◽  
Vol 14 (6) ◽  
pp. 4737-4753
Author(s):  
Quentin Errera ◽  
Emmanuel Dekemper ◽  
Noel Baker ◽  
Jonas Debosscher ◽  
Philippe Demoulin ◽  
...  

Abstract. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is the upcoming stratospheric ozone monitoring limb sounder from ESA's Earth Watch programme. Measuring in the ultraviolet–visible–near-infrared (UV–VIS–NIR) spectral regions, ALTIUS will retrieve vertical profiles of ozone, aerosol extinction coefficients, nitrogen dioxide and other trace gases from the upper troposphere to the mesosphere. In order to maximize the geographical coverage, the instrument will observe limb-scattered solar light during daytime (i.e. bright limb observations), solar occultations at the terminator and stellar/lunar/planetary occultations during nighttime. This paper evaluates the constraint of ALTIUS ozone profiles on modelled stratospheric ozone by means of an observing system simulation experiment (OSSE). In this effort, a reference atmosphere has been built and used to generate ALTIUS ozone profiles, along with an instrument simulator. These profiles are then assimilated to provide ozone analyses. A good agreement is found between the analyses and the reference atmosphere in the stratosphere and in the extra-tropical upper troposphere. In the tropical upper troposphere, although providing significant information in the analyses, the assimilation of ozone profiles does not completely eliminate the bias with respect to the reference atmosphere. The impacts of the different modes of observations have also been evaluated, showing that all of them are necessary to constrain ozone during polar winters where solar/stellar occultations are the most important during the polar night and bright limb data are the most important during the development of the ozone hole in the polar spring.


Author(s):  
Hui W. Christophersen ◽  
Brittany A. Dahl ◽  
Jason P. Dunion ◽  
Robert F. Rogers ◽  
Frank D. Marks ◽  
...  

AbstractAs part of the NASA Earth Venture-Instrument program, the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission, to be launched in January 2022, will deliver unprecedented rapid-update microwave measurements over the tropics that can be used to observe the evolution of the precipitation and thermodynamic structure of tropical cyclones (TCs) at meso- and synoptic scales. TROPICS consists of six CubeSats, each hosting a passive microwave radiometer that provides radiance observations sensitive to atmospheric temperature, water vapor, precipitation, and precipitation-size ice particles. In this study, the impact of TROPICS all-sky radiances on TC analyses and forecasts is explored through a regional mesoscale observing system simulation experiment (OSSE). The results indicate that the TROPICS all-sky radiances can have positive impacts on TC track and intensity forecasts, particularly when some hydrometeor state variables and other state variables of the data assimilation system that are relevant to cloudy radiance assimilation are updated. The largest impact on the model analyses is seen in the humidity fields, regardless of whether or not there are radiances assimilated from other satellites. TROPICS radiances demonstrate large impact on TC analyses and forecasts when other satellite radiances are absent. The assimilation of the all-sky TROPICS radiances without default radiances leads to a consistent improvement in the low- and mid-tropospheric temperature and wind forecasts throughout the five-day forecasts, but only up to 36 h lead time in the humidity forecasts at all pressure levels. This study illustrates the potential benefits of TROPICS data assimilation for TC forecasts and provides a potentially streamlined pathway for transitioning TROPICS data from research to operations post-launch.


2021 ◽  
pp. 102570
Author(s):  
Vinu Valsala ◽  
M.G. Sreeush ◽  
M. Anju ◽  
Sreenivas Pentakota ◽  
Yogesh K. Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document