Quantifying Snow Mass Mission Concept Trade-Offs Using an Observing System Simulation Experiment

2019 ◽  
Vol 20 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Camille Garnaud ◽  
Stéphane Bélair ◽  
Marco L. Carrera ◽  
Chris Derksen ◽  
Bernard Bilodeau ◽  
...  

Abstract Because of its location, Canada is particularly affected by snow processes and their impact on the atmosphere and hydrosphere. Yet, snow mass observations that are ongoing, global, frequent (1–5 days), and at high enough spatial resolution (kilometer scale) for assimilation within operational prediction systems are presently not available. Recently, Environment and Climate Change Canada (ECCC) partnered with the Canadian Space Agency (CSA) to initiate a radar-focused snow mission concept study to define spaceborne technological solutions to this observational gap. In this context, an Observing System Simulation Experiment (OSSE) was performed to determine the impact of sensor configuration, snow water equivalent (SWE) retrieval performance, and snow wet/dry state on snow analyses from the Canadian Land Data Assimilation System (CaLDAS). The synthetic experiment shows that snow analyses are strongly sensitive to revisit frequency since more frequent assimilation leads to a more constrained land surface model. The greatest reduction in spatial (temporal) bias is from a 1-day revisit frequency with a 91% (93%) improvement. Temporal standard deviation of the error (STDE) is mostly reduced by a greater retrieval accuracy with a 65% improvement, while a 1-day revisit reduces the temporal STDE by 66%. The inability to detect SWE under wet snow conditions is particularly impactful during the spring meltdown, with an increase in spatial RMSE of up to 50 mm. Wet snow does not affect the domain-wide annual maximum SWE nor the timing of end-of-season snowmelt timing in this case, indicating that radar measurements, although uncertain during melting events, are very useful in adding skill to snow analyses.

2013 ◽  
Vol 2 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Y. Luo ◽  
X. Feng ◽  
P. Houser ◽  
V. Anantharaj ◽  
X. Fan ◽  
...  

Abstract. Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 × 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.


Author(s):  
Y. Luo ◽  
X. Feng ◽  
P. Houser ◽  
V. Anantharaj ◽  
X. Fan ◽  
...  

Abstract. Using an Observing System Simulation Experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes: (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 × 2200 km2 region in the central US, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSE of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol vol−1 for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67 respectively, and RMSEs 9.49% and 6.09% vol vol−1 respectively. The domain averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.


2011 ◽  
Vol 139 (8) ◽  
pp. 2309-2326 ◽  
Author(s):  
Jason A. Otkin ◽  
Daniel C. Hartung ◽  
David D. Turner ◽  
Ralph A. Petersen ◽  
Wayne F. Feltz ◽  
...  

AbstractIn this study, an Observing System Simulation Experiment was used to examine how the assimilation of temperature, water vapor, and wind profiles from a potential array of ground-based remote sensing boundary layer profiling instruments impacts the accuracy of atmospheric analyses when using an ensemble Kalman filter data assimilation system. Remote sensing systems evaluated during this study include the Doppler wind lidar (DWL), Raman lidar (RAM), microwave radiometer (MWR), and the Atmospheric Emitted Radiance Interferometer (AERI). The case study tracked the evolution of several extratropical weather systems that occurred across the contiguous United States during 7–8 January 2008. Overall, the results demonstrate that using networks of high-quality temperature, wind, and moisture profile observations of the lower troposphere has the potential to improve the accuracy of wintertime atmospheric analyses over land. The impact of each profiling system was greatest in the lower and middle troposphere on the variables observed or retrieved by that instrument; however, some minor improvements also occurred in the unobserved variables and in the upper troposphere, particularly when RAM observations were assimilated. The best analysis overall was achieved when DWL wind profiles and temperature and moisture observations from the RAM, AERI, or MWR were assimilated simultaneously, which illustrates that both mass and momentum observations are necessary to improve the analysis accuracy.


2014 ◽  
Vol 142 (5) ◽  
pp. 1823-1834 ◽  
Author(s):  
N. C. Privé ◽  
R. M. Errico ◽  
K.-S. Tai

Abstract Most rawinsondes are launched once or twice daily, at 0000 and/or 1200 UTC; only a small number of the total rawinsonde observations are taken at 0600 and 1800 UTC (“off hour” cycle times). In this study, the variations of forecast and analysis quality between cycle times and the potential improvement of skill due to supplemental rawinsonde measurements at 0600 and 1800 UTC are tested in the framework of an observing system simulation experiment (OSSE). The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA GMAO) Goddard Earth Observing System Model, version 5 (GEOS-5), is used with the GMAO OSSE setup for an experiment emulating the months of July and August with the 2011 observational network. The OSSE is run with and without supplemental rawinsonde observations at 0600 and 1800 UTC, and the differences in analysis error and forecast skill are quantified. The addition of supplemental rawinsonde observations results in significant improvement of analysis quality in the Northern Hemisphere for both the 0000/1200 and 0600/1800 UTC cycle times, with greater improvement for the off-hour times. Reduction of root-mean-square errors on the order of 1%–3% for wind and temperature is found at the 24- and 48-h forecast times. There is a slight improvement in Northern Hemisphere anomaly correlations at the 120-h forecast time.


2017 ◽  
Vol 145 (2) ◽  
pp. 637-651 ◽  
Author(s):  
S. Mark Leidner ◽  
Thomas Nehrkorn ◽  
John Henderson ◽  
Marikate Mountain ◽  
Tom Yunck ◽  
...  

Global Navigation Satellite System (GNSS) radio occultations (RO) over the last 10 years have proved to be a valuable and essentially unbiased data source for operational global numerical weather prediction. However, the existing sampling coverage is too sparse in both space and time to support forecasting of severe mesoscale weather. In this study, the case study or quick observing system simulation experiment (QuickOSSE) framework is used to quantify the impact of vastly increased numbers of GNSS RO profiles on mesoscale weather analysis and forecasting. The current study focuses on a severe convective weather event that produced both a tornado and flash flooding in Oklahoma on 31 May 2013. The WRF Model is used to compute a realistic and faithful depiction of reality. This 2-km “nature run” (NR) serves as the “truth” in this study. The NR is sampled by two proposed constellations of GNSS RO receivers that would produce 250 thousand and 2.5 million profiles per day globally. These data are then assimilated using WRF and a 24-member, 18-km-resolution, physics-based ensemble Kalman filter. The data assimilation is cycled hourly and makes use of a nonlocal, excess phase observation operator for RO data. The assimilation of greatly increased numbers of RO profiles produces improved analyses, particularly of the lower-tropospheric moisture fields. The forecast results suggest positive impacts on convective initiation. Additional experiments should be conducted for different weather scenarios and with improved OSSE systems.


2018 ◽  
Vol 146 (12) ◽  
pp. 4247-4259 ◽  
Author(s):  
L. Cucurull ◽  
R. Atlas ◽  
R. Li ◽  
M. J. Mueller ◽  
R. N. Hoffman

Abstract Experiments with a global observing system simulation experiment (OSSE) system based on the recent 7-km-resolution NASA nature run (G5NR) were conducted to determine the potential value of proposed Global Navigation Satellite System (GNSS) radio occultation (RO) constellations in current operational numerical weather prediction systems. The RO observations were simulated with the geographic sampling expected from the original planned Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) system, with six equatorial (total of ~6000 soundings per day) and six polar (total of ~6000 soundings per day) receiver satellites. The experiments also accounted for the expected improved vertical coverage provided by the Jet Propulsion Laboratory RO receivers on board COSMIC-2. Except that RO observations were simulated and assimilated as refractivities, the 2015 version of the NCEP’s operational data assimilation system was used to run the OSSEs. The OSSEs quantified the impact of RO observations on global weather analyses and forecasts and the impact of adding explicit errors to the simulation of perfect RO profiles. The inclusion or exclusion of explicit errors had small, statistically insignificant impacts on results. The impact of RO observations was found to increase the length of the useful forecasts. In experiments with explicit errors, these increases were found to be 0.6 h in the Northern Hemisphere extratropics (a 0.4% improvement), 5.9 h in the Southern Hemisphere extratropics (a significant 4.0% improvement), and 12.1 h in the tropics (a very substantial 28.4% improvement).


2013 ◽  
Vol 141 (10) ◽  
pp. 3273-3299 ◽  
Author(s):  
Thomas A. Jones ◽  
Jason A. Otkin ◽  
David J. Stensrud ◽  
Kent Knopfmeier

Abstract An observing system simulation experiment is used to examine the impact of assimilating water vapor–sensitive satellite infrared brightness temperatures and Doppler radar reflectivity and radial velocity observations on the analysis accuracy of a cool season extratropical cyclone. Assimilation experiments are performed for four different combinations of satellite, radar, and conventional observations using an ensemble Kalman filter assimilation system. Comparison with the high-resolution “truth” simulation indicates that the joint assimilation of satellite and radar observations reduces errors in cloud properties compared to the case in which only conventional observations are assimilated. The satellite observations provide the most impact in the mid- to upper troposphere, whereas the radar data also improve the cloud analysis near the surface and aloft as a result of their greater vertical resolution and larger overall sample size. Errors in the wind field are also significantly reduced when radar radial velocity observations were assimilated. Overall, assimilating both satellite and radar data creates the most accurate model analysis, which indicates that both observation types provide independent and complimentary information and illustrates the potential for these datasets for improving mesoscale model analyses and ensuing forecasts.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Hongli Wang ◽  
Xiang-Yu Huang ◽  
Yongsheng Chen

An Observing System Simulation Experiment (OSSE) was designed and developed to assess the potential benefit of the Infrared Sounding on the Meteosat Third Generation (MTG-IRS) geostationary meteorological satellite system to regional forecasts. In the proposed OSSE framework, two different models, namely, the MM5 and WRF models, were used in a nature run and data assimilation experiments, respectively, to reduce the identical twin problem. The 5-day nature run, which included three convective storms that occurred during the period from 11 to 16 June 2002 over US Great Plains, was generated using MM5 with a 4 km. The simulated “conventional” observations and MTG-IRS retrieved temperature and humidity profiles, produced from the nature run, were then assimilated into the WRF model. Calibration experiments showed that assimilating real or simulated “conventional” observations yielded similar error statistics in analyses and forecasts, indicating that the developed OSSE system worked well. On average, the MTG-IRS retrieved profiles had positive impact on the analyses and forecasts. The analyses reduced the errors not only in the temperature and the humidity fields but in the horizontal wind fields as well. The forecast skills of these variables were improved up to 12 hours. The 18 h precipitation forecast accuracy was also increased.


Sign in / Sign up

Export Citation Format

Share Document