Eco-friendly, One-Pot Multicomponent Synthesis of Pyran Annulated Heterocyclic Scaffolds at Room Temperature Using Ammonium or Sodium Formate as Non-toxic Catalyst

2014 ◽  
Vol 51 (S1) ◽  
pp. E303-E308 ◽  
Author(s):  
G. Brahmachari ◽  
S. Laskar ◽  
B. Banerjee
SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


2015 ◽  
Vol 17 (5) ◽  
pp. 2859-2866 ◽  
Author(s):  
Arijit Saha ◽  
Soumen Payra ◽  
Subhash Banerjee

Herein, a facile one-pot multicomponent protocol for the synthesis of biologically important pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives has been demonstrated using ZrO2 nanoparticles as reusable catalyst at room temperature.


2019 ◽  
Vol 31 (6) ◽  
pp. 1357-1361 ◽  
Author(s):  
NARENDRA R. KAMBLE ◽  
VINOD T. KAMBLE

A combinatorial library of benzylpyrazolyl coumarin derivatives have been synthesized by a green one-pot four-component reaction between aryl hydrazine/hydrazine hydrate (1), ethyl acetoacetate (2), aromatic aldehydes (3) and 4-hydroxycoumarin (4) catalyzed by niobium pentachloride with silver salt under solvent-free conditions has been developed. Experimental simplicity, simple work-up procedure and solvent-free reaction condition at room temperature are important features of the present protocol.


2017 ◽  
Vol 95 (12) ◽  
pp. 1296-1302 ◽  
Author(s):  
Somaiah Gajaganti ◽  
Shivam Bajpai ◽  
Vandana Srivastava ◽  
Sundaram Singh

The present report highlights an efficient use of oxygen radical anion to promote a room temperature multi-component synthesis of spirooxindoles (4a–4l) under mild reaction conditions. The potassium superoxide (KO2) and tetraethylammonium bromide (TEAB) combination generate the oxygen radical anion in situ to promote this transformation. This method offers a sustainable and direct access to the biologically important spirooxindole derivatives in good to excellent yields.


2021 ◽  
Vol 18 ◽  
Author(s):  
Yatin U. Gadkari ◽  
Rajesh D. Shanbhag ◽  
Vikas N. Telvekar

: An efficient methodology for the synthesis of 1,3-thiazolidin-4-ones using L-Proline as catalyst under aqueous conditions has been developed. The one-pot, multicomponent reaction of aromatic/heterocyclic aldehyde, aromatic amine and thioglycolic acid at room temperature give 1,3-thiazolidin-4-ones in moderate to good yields. Further, the current approach is notably greener than traditional methods with E-factor of 3.1 and the eco scale score of 96. The developed protocol offers several features, such as being simple, environmentally benign, energy-efficient, economical, mild conditions, shorter reaction time.


2020 ◽  
Vol 17 (6) ◽  
pp. 473-482
Author(s):  
Hedieh Rostami ◽  
Lotfi Shiri

Aims: Synthesis of pyrrolo[1,2-d][1,4]benzoxazines and pyrrolo[1,2-a]pyrazines using magnetic nanoparticles. Background: One-pot, three component reaction for the synthesis of pyrrolo[1,2-d][1,4]benzoxazines and pyrrolo[1,2-a]pyrazines is reported. For the synthesis of pyrrolo[1,2-d][1,4]benzoxazines use of 2- aminophenols, dialkylacetylenedicarboxylates and β -nitrostyrene derivatives and Pyrrolo[1,2-a]pyrazines synthesized from reaction of ethylenediamine, dialkylacetylenedicarboxylates and β-nitrostyrene derivatives is discussed. Materials and Methods: 2-aminophenol (0.5 mmol) and dimethylacetylenedicarboxylate (0.5 mmol) in water (3 ml) were stirred at room temperature for 10 min. Then, β-nitrostyrene (0.5 mmol) and Fe3O4@SiO2@LArginine- SA MNPs (0.07 g) were added and the mixture was refluxed for 5 h. After completion of the reaction, the mixture was cooled to room temperature and the catalyst was separated with external magnet and product extracted with dichloromethane. More purification of products was performed by column chromatography (nhexane/ ethyl acetate 4:1). Ethylenediamine (0.6 mmol) was added to dialkylacetylenedicarboxylate (0.6 mmol) in 3 ml water and was stirred for 10 min at room temperature. Later, β -nitrostyrene (0.5 mmol) and Fe3O4@SiO2@L-Arginine-SA MNPs (0.06 g) were added to mixture reaction and refluxed for 3 h. After completion, the mixture reaction was cooled to room temperature and the catalyst was separated by an external magnet. Then, the product was extracted with dichloromethane. For more purification column chromatography was used (n-hexane/ethylacetate 1:1). Results and Discussion: In this research, we have synthesized new derivatives of pyrrolo[1,2- d][1.4]benzoxazines and pyrrolo[1,2-a]pyrazines in green conditions consisting of use of water as a green solvent and magnetic nanoparticles. Conclusion: In this research, we have synthesized new derivatives of pyrrolo[1,2-d][1.4]benzoxazines and pyrrolo[1,2-a]pyrazines in green conditions consisting of use of water as a green solvent and magnetic nanoparticles which were easily separated from mixture with an external magnet and had the capability to be recovered and reused. Also, in this work, the yield was good and the time of reactions was low compared with prior research.


2021 ◽  
Vol 6 (2) ◽  
pp. 111-115
Author(s):  
H.P. Parekh ◽  
M.H. Chauhan ◽  
N.L. Solanki ◽  
V.H. Shah

In present work, a series of novel [1,2,4]triazolo[1,5-a]quinoline derivatives (HP-101-110) have been synthesized using multi-component reaction at room temperature in the presence of ammonium chloride as mild, cost effective green catalyst along with water as eco-friendly green solvent. The synthesis of 1,2,4-triazolo[1,5-a]quinolines (HP-101-110) was achieved by two step process. In first step, diversified Hantzsch pyridine reaction of an appropriate aromatic aldehyde, malononitrile, dimedone and benz hydrazide using ethanol as a solvent gives N-(2-amino-3-cyano-7,7-dimethyl-5-oxo-4-phenyl-5,6,7,8- tetrahydro-quinolin-1(4H)-yl)-4-hydroxybenzamide derivatives. In the second step, synthesis of the final product 2-(4-hydroxyphenyl)-8,8-dimethyl-6-oxo-5-phenyl-6,7,8,9-tetrahydro[1,2,4]triazolo[1,5- a]-quinoline-4-carbonitriles was achieved by the intramolecular cyclization of step 1 product.The structure of all the synthesized compounds (HP101-110) has been elucidated by FT-IR, 1H & 13C NMR, mass spectral data and elemental analyses.


Sign in / Sign up

Export Citation Format

Share Document