Synthesis and Molecular Drug Efficacy of Indoline-based Dihydroxy-thiocarbamides: Inflammation Regulatory Property Unveiled over COX-2 Inhibition, Molecular Docking, and Cytotoxicity Prospects

2018 ◽  
Vol 55 (7) ◽  
pp. 1658-1668 ◽  
Author(s):  
Rajesh Kumar M ◽  
Manikandan Alagumuthu ◽  
Violet Dhayabaran V

2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.



Author(s):  
Jelena Bošković ◽  
Dušan Ružić ◽  
Olivera Čudina ◽  
Katarina Nikolic ◽  
Vladimir Dobričić

Background: Inflammation is common pathogenesis of many diseases progression, such as malignancy, cardiovascular and rheumatic diseases. The inhibition of the synthesis of inflammatory mediators by modulation of cyclooxygenase (COX) and lipoxygenase (LOX) pathways provides a challenging strategy for the development of more effective drugs. Objective: The aim of this study was to design dual COX-2 and 5-LOX inhibitors with iron-chelating properties using a combination of ligand-based (three-dimensional quantitative structure-activity relationship (3D-QSAR)) and structure-based (molecular docking) methods. Methods: The 3D-QSAR analysis was applied on a literature dataset consisting of 28 dual COX-2 and 5-LOX inhibitors in Pentacle software. The quality of developed COX-2 and 5-LOX 3D-QSAR models were evaluated by internal and external validation methods. The molecular docking analysis was performed in GOLD software, while selected ADMET properties were predicted in ADMET predictor software. Results: According to the molecular docking studies, the class of sulfohydroxamic acid analogues, previously designed by 3D-QSAR, was clustered as potential dual COX-2 and 5-LOX inhibitors with iron-chelating properties. Based on the 3D-QSAR and molecular docking, 1j, 1g, and 1l were selected as the most promising dual COX-2 and 5-LOX inhibitors. According to the in silico ADMET predictions, all compounds had an ADMET_Risk score less than 7 and a CYP_Risk score lower than 2.5. Designed compounds were not estimated as hERG inhibitors, and 1j had improved intrinsic solubility (8.704) in comparison to the dataset compounds (0.411-7.946). Conclusion: By combining 3D-QSAR and molecular docking, three compounds (1j, 1g, and 1l) are selected as the most promising designed dual COX-2 and 5-LOX inhibitors, for which good activity, as well as favourable ADMET properties and toxicity, are expected.



2017 ◽  
Vol 29 (11) ◽  
pp. 2559-2564
Author(s):  
M. Vijaya Bhargavi ◽  
P. Shashikala ◽  
M. Sumakanth ◽  
Shravan Kumar Gunda


2017 ◽  
Vol 13 (11) ◽  
pp. 356-359 ◽  
Author(s):  
Mario Rowan Sohilait ◽  
◽  
Harno Dwi Pranowo ◽  
Winarto Haryadi ◽  
◽  
...  


Author(s):  
Sarath Sasi Kumar ◽  
Anjali T

Objective: In silico design and molecular docking of 1,2-benzisoxazole derivatives for their analgesic and anti-inflammatory activity using computational methods.Methods: In silico molecular properties of 1,2-benzisoxazole derivatives were predicted using various software’s such as Chemsketch, Molinspiration, PASS and Schrodinger to select compounds having optimum drug-likeness, molecular descriptors resembling those of standard drugs and not violating the ‘Lipinski rule of 5’. Molecular docking was performed on active site of nicotinic acetylcholine receptor (PDB: 2KSR) for analgesic activity and COX-2 (PDB: 6COX) for anti-inflammatory activity using Schrodinger under maestro molecular modelling environment.Results: From the results of molecular docking studies of 1,2-benzisoxazole derivatives, all the compounds showed good binding interactions with Nicotinic acetylcholine receptor and COX-2. Compounds 4a and 4c showed highest binding scores (-7.46 and-7.21 respectively) with nicotinic acetylcholine receptor and exhibited maximum analgesic activity. Compound 4a showed highest binding score (-7.8) with COX-2 and exhibited maximum anti-inflammatory activity.Conclusion: All the derivatives of 1,2-benzisoxazole showed good analgesic and anti-inflammatory activity as predicted using molecular docking on respective receptors.



2021 ◽  
Vol 11 (6) ◽  
pp. 13779-13789

A simple and efficient catalytic synthesis of new 1H-pyrazole-1-carbothioamide derivatives through a one-pot reaction of hydrazine hydrate, arylidene malononitrile and isothiocyanates in the presence of HAp/ZnCl2 nano-flakes at 60-70°C has been described. The protocol's main advantages include high yields of products, a wide range of substrates, simple procedure, and short reaction time. Molecular docking studies of the designed compounds were accomplished as COX-2 inhibitors and showed that compounds 3d, 3e, 3h, and 3n give promising results compared with celecoxib as a reference drug.



Author(s):  
Faruk Jayanto Kelutur ◽  
Nyi Mekar Saptarini ◽  
Resmi Mustarichie ◽  
Dikdik Kurnia

Background: The inflammatory pathway is induced by cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzymes, so it requires the development of its inhibitors, such as nonsteroidal anti-inflammatory drugs (NSAIDs), but they have side effects. Therefore, the discovery and development of natural medicine as a lead compound are needed. The gorgonian corals have been reported to contain cyclic diterpenes with anti-inflammatory activities. The specific anti-inflammatory inhibitor potential has not been reported regarding these secondary metabolites, whether in COX-2 or iNOS. Thus, the in silico method is the right alternative. Objective: This study aimed to determine the potency of fifteen terpenes of the various gorgonian corals to COX-2 and iNOS enzymes as an anti-inflammatory Methods: Molecular docking was performed using ChemDraw Ultra 12.0, Chem3D Pro 12.0, Biovia Discovery Studio 2016 Client®, Autodock Tools 4.2, prediction pharmacokinetics (Pre-ADMET), and oral administration (Lipinski rule of five). Results: Potential terpenes based on ΔG (kcal/mol) and Ki (nM) to COX-2 were gyrosanol B (-10,32; 27,15), gyrosanol A (-10,20; 33,57), echinolabdane A (-9,81; 64,76). Only nine terpenes were specific to COX-2 active sites, while for iNOS were palmonine F (-7.76; 2070), briarenol C (-7.55; 2910), and all test compounds binding to the iNOS active sites. Pre-ADMET prediction obtained that HIA was very excellent (70–100%), Caco-2 had moderate permeability (4–70 nm sec-1), and PPB had strong binding (> 90%). Eight terpenes qualified for the Lipinski rule of five. Conclusion: NOS was a specific target for terpenes based on the free energy of binding (ΔG).



2011 ◽  
Vol 4 (1) ◽  
pp. 47-55 ◽  
Author(s):  
A. Amir ◽  
M.A. Siddiqui ◽  
N. Kapoor ◽  
A. Arya ◽  
H. Kumar


Sign in / Sign up

Export Citation Format

Share Document