Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets

Author(s):  
Garvit Satija ◽  
Barkha Sharma ◽  
Anish Madan ◽  
Ashif Iqubal ◽  
Mohammad Shaquiquzzaman ◽  
...  

2014 ◽  
Vol 84 ◽  
pp. 718-730 ◽  
Author(s):  
Sandrine Grosse ◽  
Véronique Mathieu ◽  
Christelle Pillard ◽  
Stéphane Massip ◽  
Mathieu Marchivie ◽  
...  


2009 ◽  
Vol 52 (4) ◽  
pp. 1100-1114 ◽  
Author(s):  
Laurent Ingrassia ◽  
Florence Lefranc ◽  
Janique Dewelle ◽  
Laurent Pottier ◽  
Véronique Mathieu ◽  
...  


2018 ◽  
Vol 25 (30) ◽  
pp. 3560-3576 ◽  
Author(s):  
Massimo Tosolini ◽  
Paolo Pengo ◽  
Paolo Tecilla

Natural and synthetic anionophores promote the trans-membrane transport of anions such as chloride and bicarbonate. This process may alter cellular homeostasis with possible effects on internal ions concentration and pH levels triggering several and diverse biological effects. In this article, an overview of the recent results on the study of aniontransporters, mainly acting with a carrier-type mechanism, is given with emphasis on the structure/activity relationship and on their biological activity as antibiotic and anticancer agents and in the development of new drugs for treating conditions derived from dysregulation of natural anion channels.



Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.



2020 ◽  
Vol 10 (2) ◽  
pp. 168-176
Author(s):  
Krishnasamy Gopinath ◽  
Nagarajan Subbiah ◽  
Muthusamy Karthikeyan

Background: Syzygium densiflorum Wall. ex Wight & Arn (Myrtaceae) has been traditionally used by the local tribes of the Nilgiris, Tamil Nadu, India, for the treatment of diabetes. Objective: This study aimed to isolate the major phytoconstituents from the S. densiflorum fruits and to perform computational studies for chemical reactivity and biological activity of the isolated compound. Materials and Methods: Two different compounds were isolated from ethanolic extract of S. densiflorum fruits and purified using HPLC. The structures of the compounds were elucidated on the basis of their 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HRESIMS, and FT-IR data. Further, the chemical reactivity of the compounds was analyzed by density functional theory calculations and its therapeutic role in diabetic management was examined by comparing the structure of isolated compounds with previously reported bioactive compounds. Results: Of the two compounds ((6,6 & 1-kestopentaose (1) and 6-(hydroxymethyl)-3-[3,4,5- trihydroxy- 6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol)(2)). β-glucosidase, β-galactosidase, α-glucosidase and β-amylase inhibition activity of the compounds were predicted by structure activity relationship. Conclusion: Structure-activity relationship analysis was performed to predict the therapeutic role of isolated compounds. These computational studies may be performed to minimize the efforts to determine the therapeutic role of natural compounds.



Author(s):  
Sk. Abdul Amin ◽  
Suvankar Banerjee ◽  
Samayaditya Singh ◽  
Insaf Ahmed Qureshi ◽  
Shovanlal Gayen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document