Reproducibility of left ventricular mass measurement using a half-Fourier black-blood single-shot fast spin-echo sequence within a single breath hold: Comparison with a conventional multiple breath-hold segmented gradient echo technique in patients

2002 ◽  
Vol 15 (6) ◽  
pp. 654-660 ◽  
Author(s):  
Olivier Vignaux ◽  
Denis Duboc ◽  
Joel Coste ◽  
Christophe Argaud ◽  
Pierre Carlier ◽  
...  
1996 ◽  
Vol 6 (4) ◽  
pp. 608-614 ◽  
Author(s):  
Philippe S. Melki ◽  
Christophe Argaud ◽  
Matt Suminski ◽  
Olivier Hélénon ◽  
Xavier Belin ◽  
...  

2017 ◽  
Vol 59 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Yì Xiáng J Wáng ◽  
Min Deng ◽  
Gladys G Lo ◽  
Dong Liang ◽  
Jing Yuan ◽  
...  

Background Recent researches suggest that T1rho may be a non-invasive and quantitative technique for detecting and grading liver fibrosis. Purpose To compare a multi-breath-hold bright-blood fast gradient echo (GRE) imaging and a single breath-hold single-shot fast spin echo (FSE) imaging with black-blood effect for liver parenchyma T1rho measurement and to study liver physiological T1rho value in healthy volunteers. Material and Methods The institutional Ethics Committee approved this study. 28 healthy participants (18 men, 10 women; age = 29.6 ± 5.1 years) underwent GRE liver T1rho imaging, and 20 healthy participants (10 men, 10 women; age = 36.9 ± 10.3 years) underwent novel black-blood FSE liver T1rho imaging, both at 3T with spin-lock frequency of 500 Hz. The FSE technique allows simultaneous acquisition of four spin lock times (TSLs; 1 ms, 10 ms, 30 ms, 50msec) in 10 s. Results For FSE technique the intra-scan repeatability intraclass correlation coefficient (ICC) was 0.98; while the inter-scan reproducibility ICC was 0.82 which is better than GRE technique’s 0.76. Liver T1rho value in women tended to have a higher value than T1rho values in men (FSE: 42.28 ± 4.06 ms for women and 39.13 ± 2.12 ms for men; GRE: 44.44 ± 1.62 ms for women and 42.36 ± 2.00 ms for men) and FSE technique showed liver T1rho value decreased slightly as age increased. Conclusion Single breath-hold black-blood FSE sequence has better scan–rescan reproducibility than multi-breath-hold bright-blood GRE sequence. Gender and age dependence of liver T1rho in healthy participants is observed, with young women tending to have a higher T1rho measurement.


Author(s):  
Diana Bencikova ◽  
Fei Han ◽  
Stephan Kannengieser ◽  
Marcus Raudner ◽  
Sarah Poetter-Lang ◽  
...  

Abstract Objectives T2 mapping of the liver is a potential diagnostic tool, but conventional techniques are difficult to perform in clinical practice due to long scan time. We aimed to evaluate the accuracy of a prototype radial turbo-spin-echo (rTSE) sequence, optimized for multi-slice T2 mapping in the abdomen during one breath-hold at 3 T. Methods A multi-sample (fat: 0–35%) agarose phantom doped with MnCl2 and 80 subjects (73 patients undergoing abdomen MR examination and 7 healthy volunteers) were investigated. A radial turbo-spin-echo (rTSE) sequence with and without fat suppression, a Cartesian turbo-spin-echo (Cart-TSE) sequence, and a single-voxel multi-echo STEAM spectroscopy (HISTO) were performed in phantom, and fat-suppressed rTSE and HISTO sequences were performed in in vivo measurements. Two approaches were used to sample T2 values: manually selected circular ROIs and whole liver analysis with Gaussian mixture models (GMM). Results The rTSE-T2s values exhibited a strong correlation with Cart-TSE-T2s (R2 = 0.988) and with HISTO-T2s of water (R2 = 0.972) in phantom with an offset between rTSE and Cart-TSE maps (mean difference = 3.17 ± 1.18 ms). The application of fat suppression decreased T2 values, and the effect was directly proportional to the amount of fat. Measurements in patients yielded a linear relationship between rTSE- and HISTO-T2s (R2 = 0.546 and R2 = 0.580 for ROI and GMM, respectively). Conclusion The fat-suppressed rTSE sequence allows for fast and accurate determination of T2 values of the liver, and appears to be suitable for further large cohort studies. Key Points •Radial turbo-spin-echo T2 mapping performs comparably to Cartesian TSE-T2 mapping, but an offset in values is observed in phantom measurements. •Fat-suppressed radial turbo-spin-echo T2 mapping is consistent with T2 of water as assessed by MRS in phantom measurements. •Fat-suppressed radial turbo-spin-echo sequence allows fast T2 mapping of the liver in a single breath-hold and is correlated with MRS-based T2 of water.


Sign in / Sign up

Export Citation Format

Share Document