Critical role of spatial resolution in dynamic contrast-enhanced breast MRI

2001 ◽  
Vol 13 (6) ◽  
pp. 862-867 ◽  
Author(s):  
Edna Furman-Haran ◽  
Dov Grobgeld ◽  
Frederick Kelcz ◽  
Hadassa Degani
2019 ◽  
Vol 26 (7) ◽  
pp. 923-929 ◽  
Author(s):  
Shima Roknsharifi ◽  
Michael D.C. Fishman ◽  
Monica D. Agarwal ◽  
Alexander Brook ◽  
Vritti Kharbanda ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 330
Author(s):  
Mio Adachi ◽  
Tomoyuki Fujioka ◽  
Mio Mori ◽  
Kazunori Kubota ◽  
Yuka Kikuchi ◽  
...  

We aimed to evaluate an artificial intelligence (AI) system that can detect and diagnose lesions of maximum intensity projection (MIP) in dynamic contrast-enhanced (DCE) breast magnetic resonance imaging (MRI). We retrospectively gathered MIPs of DCE breast MRI for training and validation data from 30 and 7 normal individuals, 49 and 20 benign cases, and 135 and 45 malignant cases, respectively. Breast lesions were indicated with a bounding box and labeled as benign or malignant by a radiologist, while the AI system was trained to detect and calculate possibilities of malignancy using RetinaNet. The AI system was analyzed using test sets of 13 normal, 20 benign, and 52 malignant cases. Four human readers also scored these test data with and without the assistance of the AI system for the possibility of a malignancy in each breast. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were 0.926, 0.828, and 0.925 for the AI system; 0.847, 0.841, and 0.884 for human readers without AI; and 0.889, 0.823, and 0.899 for human readers with AI using a cutoff value of 2%, respectively. The AI system showed better diagnostic performance compared to the human readers (p = 0.002), and because of the increased performance of human readers with the assistance of the AI system, the AUC of human readers was significantly higher with than without the AI system (p = 0.039). Our AI system showed a high performance ability in detecting and diagnosing lesions in MIPs of DCE breast MRI and increased the diagnostic performance of human readers.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Michael Ghijsen ◽  
Yuting Lin ◽  
Mitchell Hsing ◽  
Orhan Nalcioglu ◽  
Gultekin Gulsen

Diffuse Optical Tomography (DOT) is an optical imaging modality that has various clinical applications. However, the spatial resolution and quantitative accuracy of DOT is poor due to strong photon scatting in biological tissue. Structurala prioriinformation from another high spatial resolution imaging modality such as Magnetic Resonance Imaging (MRI) has been demonstrated to significantly improve DOT accuracy. In addition, a contrast agent can be used to obtain differential absorption images of the lesion by using dynamic contrast enhanced DOT (DCE-DOT). This produces a relative absorption map that consists of subtracting a reconstructed baseline image from reconstructed images in which optical contrast is included. In this study, we investigated and compared different reconstruction methods and analysis approaches for regular endogenous DOT and DCE-DOT with and without MR anatomicala prioriinformation for arbitrarily-shaped objects. Our phantom and animal studies have shown that superior image quality and higher accuracy can be achieved using DCE-DOT together with MR structurala prioriinformation. Hence, implementation of a combined MRI-DOT system to image ICG enhancement can potentially be a promising tool for breast cancer imaging.


Sign in / Sign up

Export Citation Format

Share Document