Throwing injury of the elbow: Assessment with gradient three-dimensional, Fourier transform gradient-echo and short tau inversion recovery images

1998 ◽  
Vol 8 (2) ◽  
pp. 487-492 ◽  
Author(s):  
Hideharu Sugimoto ◽  
Kazusa Hyodoh ◽  
Takeshi Shinozaki
2019 ◽  
Vol 10 (01) ◽  
pp. 48-53 ◽  
Author(s):  
Sudesh Kumar ◽  
Suresh Kumar ◽  
Mukesh Surya ◽  
Anjali Mahajan ◽  
Sanjiv Sharma

ABSTRACT Aims: The aim of this study is to compare postcontrast three-dimensional (3D) T1-Sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D fluid-attenuated inversion recovery (FLAIR), and 3D T1-magnetization prepared rapid gradient echo (MPRAGE) sequences in patients of meningitis. Settings and Design: A hospital-based cross-sectional study done in the Department of Radiodiagnosis, IGMC Shimla for a period of 1 year from June 1, 2016, to May 30, 2017. Subjects and Methods: A total of 30 patients suspected of meningitis underwent magnetic resonance imaging evaluation with postcontrast 3D T1-MPRAGE, 3D T1-SPACE, and 3D FLAIR sequences. The abnormal leptomeningeal enhancement was noted by two radiologists together on these sequences and scores were given to the abnormal leptomeningeal enhancement. Statistical Analysis Used: The sensitivity of 3D T1-SPACE, 3D T1-MPRAGE, and 3D FLAIR was calculated and compared. The level of agreement between these sequences was assessed by kappa coefficient. P < 0.05 was taken as statistically significant. Results: 3D T1-SPACE shows superiority in meningeal enhancement along basal cisterns, Sylvian fissure and along cerebral convexities. It is also found to be better in delineating parenchymal lesions. 3D FLAIR failed to demonstrate enhancement along cerebral convexities however found to be better than 3D T1-MPRAGE in delineating enhancement along basal cisterns and Sylvian fissures. 3D T1-MPRAGE has shown subtle enhancement in basal cisterns, Sylvian fissure and along cerebral convexities. 3D T1-SPACE, 3D FLAIR, and 3D T1-MPRAGE has sensitivity of 91.67%, 66.67%, and 54.17%, respectively. Conclusion: Postcontrast 3D T1-SPACE sequence is an excellent tool than postcontrast 3D T1-MPRAGE and 3D FLAIR sequences in the evaluation of meningeal enhancement and depiction of additional lesions in brain parenchyma.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3652
Author(s):  
Cory Juntunen ◽  
Isabel M. Woller ◽  
Yongjin Sung

Hyperspectral three-dimensional (3D) imaging can provide both 3D structural and functional information of a specimen. The imaging throughput is typically very low due to the requirement of scanning mechanisms for different depths and wavelengths. Here we demonstrate hyperspectral 3D imaging using Snapshot projection optical tomography (SPOT) and Fourier-transform spectroscopy (FTS). SPOT allows us to instantaneously acquire the projection images corresponding to different viewing angles, while FTS allows us to perform hyperspectral imaging at high spectral resolution. Using fluorescent beads and sunflower pollens, we demonstrate the imaging performance of the developed system.


2011 ◽  
Vol 83 ◽  
pp. 280-284
Author(s):  
Ming Jiang ◽  
Shu Zhang ◽  
Xiao Yuan He

Fast-starts are brief, sudden accelerations used by fish during predator-prey encounters. In this paper, a three-dimensional (3D) test and analysis method is critical to understand the function of the pectoral fin during maneuvers. An experiment method based on Fourier Transform Profilometry for 3D pectoral fin profile variety during fish maneuvers is proposed. This method was used in a carp fast-start during prey. Projecting the moiré fringes onto a carp pectoral fin it will produce the deformed fringe patterns contain 3D information. A high speed camera captures these time-sequence images. By Fourier transform, filter, inverse Fourier transform and unwrap these phase maps in 3D phase space, the complex pectoral fin profile variety were really reconstructed. The present study provides a new method to quantify the analysis of kinetic characteristic of the pectoral fin during maneuvers.


Sign in / Sign up

Export Citation Format

Share Document