scholarly journals Radiation dose and image quality optimisation in medical imaging

2015 ◽  
Vol 62 (3) ◽  
pp. 236-237
Author(s):  
Peter Hogg
Author(s):  
I. Shirazu ◽  
T. A Sackey ◽  
E K Eduful ◽  
T B. Dery ◽  
M. Pokoo-Aikins ◽  
...  

Risk of developing cancer in paediatric patients is higher compared with adults and hence need for optimization strategies in paediatric medical imaging is very critical. The higher risk is attributable to the fact that children have developing organs and tissues which are more sensitive to the effects of radiation, and also they have longer life expectancy which allows more time for any harmful effects of radiation to manifest. Optimization of radiological protection is a means of adjusting imaging parameters and instituting protective measures such that required images are obtained with lowest possible radiation dose, and net benefit is maximized to maintain sufficient image quality for diagnostic purposes. Special consideration is given to the availability of dose reduction measures for paediatric imaging equipment. A unique aspect of paediatric imaging is with regards to the wide range in patient sizes and weights, therefore requiring special attention to optimization and modification of equipment, technique, and imaging parameters. Good radiographic technique for paediatrics include attention to patient positioning, field size and adequate collimation, use of protective shielding, optimization of exposure factors etc. In CT, dose reduction is optimized by the adjustment of scan parameters such as mA, kVp, and pitch in accordance with patient weight, age, region scanned, and study indication. Paediatric radiological imaging should therefore be performed by trained and experienced health personnel in the medical imaging department. The overall aim of the research was to enhance the capability of Ghana to improve the efficiency of existing modalities for paediatric medical imaging and to implement and enhance optimization techniques and methodologies for advanced paediatric medical imaging in CT. In addition to providing appropriate clinical recommendation for clinicians for dose management during CT scan. MVL DICOM application software was used to access image data during abdominal CT scan. Effective dose estimates were estimated as developed by ICRP 103 recommendations. The data collection was based on retrospective extraction of image data, using MVL platform where detailed information of the CTDIvol and DLP were available for recording. The weighted CTDI (CTDIW) was estimated by multiplying the volumetric CTDI (CTDIVOL) by the pitch factor. The effective dose was estimated by the product of the region-specific normalizing constant and the dose length product on each image. For image quality Signal to Noise Ratio was estimated and compare with effective dose for dose optimisation. In conclusion, the mean dose parameters exceeded the recommended dose parameter and hence an urgent need for an action to minimise radiation dose to paediatric patients.


Author(s):  
Sultan Aldosari ◽  
Zhonghua Sun

Background: The aim of this study is to perform a systematic review of the feasibility and clinical application of double low-dose CT pulmonary angiography (CTPA) in the diagnosis of patients with suspected pulmonary embolism. Discussion: A total of 13 studies were found to meet selection criteria reporting both low radiation dose (70 or 80 kVp versus 100 or 120 kVp) and low contrast medium dose CTPA protocols. Lowdose CTPA resulted in radiation dose reduction from 29.6% to 87.5% in 12 studies (range: 0.4 to 23.5 mSv), while in one study, radiation dose was increased in the dual-energy CT group when compared to the standard 120 kVp group. CTPA with use of low contrast medium volume (range: 20 to 75 ml) was compared to standard CTPA (range: 50 to 101 ml) in 12 studies with reduction between 25 and 67%, while in the remaining study, low iodine concentration was used with 23% dose reduction achieved. Quantitative assessment of image quality (in terms of signal-to-noise ratio and contrast-to-noise ratio) showed that low-dose CTPA was associated with higher, lower and no change in image quality in 3, 3 and 6 studies, respectively when compared to the standard CTPA protocol. The subjective assessment indicated similar image quality in 11 studies between low-dose and standard CTPA groups, and improved image quality in 1 study with low-dose CTPA. Conclusion: This review shows that double low-dose CTPA is feasible in the diagnosis of pulmonary embolism with significant reductions in both radiation and contrast medium doses, without compromising diagnostic image quality.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Andreas S. Brendlin ◽  
Moritz T. Winkelmann ◽  
Phuong Linh Do ◽  
Vincent Schwarze ◽  
Felix Peisen ◽  
...  

To evaluate the effect of radiation dose reduction on image quality and diagnostic confidence in contrast-enhanced whole-body computed tomography (WBCT) staging. We randomly selected March 2016 for retrospective inclusion of 18 consecutive patients (14 female, 60 ± 15 years) with clinically indicated WBCT staging on the same 3rd generation dual-source CT. Using low-dose simulations, we created data sets with 100, 80, 60, 40, and 20% of the original radiation dose. Each set was reconstructed using filtered back projection (FBP) and Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 1–5, resulting in 540 datasets total. ADMIRE 2 was the reference standard for intraindividual comparison. The effective radiation dose was calculated using commercially available software. For comparison of objective image quality, noise assessments of subcutaneous adipose tissue regions were performed automatically using the software. Three radiologists blinded to the study evaluated image quality and diagnostic confidence independently on an equidistant 5-point Likert scale (1 = poor to 5 = excellent). At 100%, the effective radiation dose in our population was 13.3 ± 9.1 mSv. At 20% radiation dose, it was possible to obtain comparably low noise levels when using ADMIRE 5 (p = 1.000, r = 0.29). We identified ADMIRE 3 at 40% radiation dose (5.3 ± 3.6 mSv) as the lowest achievable radiation dose with image quality and diagnostic confidence equal to our reference standard (p = 1.000, r > 0.4). The inter-rater agreement for this result was almost perfect (ICC ≥ 0.958, 95% CI 0.909–0.983). On a 3rd generation scanner, it is feasible to maintain good subjective image quality, diagnostic confidence, and image noise in single-energy WBCT staging at dose levels as low as 40% of the original dose (5.3 ± 3.6 mSv), when using ADMIRE 3.


2015 ◽  
Vol 204 (6) ◽  
pp. 1197-1202 ◽  
Author(s):  
Yookyung Kim ◽  
Yoon Kyung Kim ◽  
Bo Eun Lee ◽  
Seok Jeong Lee ◽  
Yon Ju Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document