Is there a quiescent typhoon season over the western North Pacific following a strong El Niño event?

2018 ◽  
Vol 39 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Chao Wang ◽  
Liguang Wu ◽  
Haikun Zhao ◽  
Jian Cao ◽  
Wei Tian
2017 ◽  
Vol 30 (24) ◽  
pp. 9979-9997 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Qinyu Liu

Previous studies have suggested that tropical cyclone (TC) seasons over the western North Pacific (WNP) in the decaying years of El Niño events are generally less active than normal. The two strongest El Niño events on record were 1997/98 and 2015/16, but TC activities over the WNP displayed a sharp contrast between the decaying years of the two events. In 1998, consistent with previous studies, the WNP witnessed an extremely quiet season with no TC genesis in the preseason (January–June) and with only 10 named TCs observed in the typhoon season (July–October), making 1998 the most inactive season in the basin on record. In 2016, no TC formed in the preseason, similar to 1998; however, the basin became remarkably active in the typhoon season with above-normal named TCs observed. Further analyses indicate that the absence of TCs in the preseason in both 1998 and 2016 and the less active typhoon season in 1998 were attributed to the strong western Pacific anomalous anticyclone associated with the super El Niño events. However, the pattern of sea surface temperature anomalies (SSTAs) in the Pacific in 2016 showed features distinct from that in 1998. During July–August, the extremely positive phase of the Pacific meridional mode (PMM) triggered an anomalous cyclonic circulation and negative vertical wind shear over the WNP, favorable for TC geneses, while during September–October, the combined effect of the equatorial western Pacific warming and the weak La Niña event enhanced TC geneses over the WNP.


2020 ◽  
Vol 148 (5) ◽  
pp. 1877-1890 ◽  
Author(s):  
Peng Hu ◽  
Wen Chen ◽  
Shangfeng Chen ◽  
Yuyun Liu ◽  
Ruping Huang

Abstract The El Niño–Southern Oscillation (ENSO) is regarded as one of the most important factors for onset of the South China Sea summer monsoon (SCSSM). Previous studies generally indicated that an El Niño event tends to result in a late onset of the SCSSM monsoon. However, this relationship has not been true in recent years, particularly when an extremely early SCSSM onset (1 May 2019) occurred following the 2018/19 El Niño event in the preceding winter. The processes of the second earliest SCSSM onset in the past 41 years were investigated using NCEP–DOE reanalysis, OLR data, and ERSST. A negative sea surface temperature and associated anticyclonic anomalies were absent over the western North Pacific in the late spring of 2019 following an El Niño event in the preceding winter. Thus, the mean circulation in the late spring of 2019 does not prevent SCSSM onset, which is in sharp contrast to the composited spring of the El Niño decaying years. The convective active and westerly phases of a 30–60-day oscillation originating from the Indian Ocean provided a favorable background for the SCSSM onset in 2019. In addition, the monsoon onset vortex over the Bay of Bengal and the cold front associated with a midlatitude trough over East Asia also played important roles in triggering the early onset of the SCSSM in 2019. No tropical cyclone appeared over the western North Pacific during April and May, and the enhancement of quasi-biweekly oscillation mainly occurs after the SCSSM onset; thus, these two factors contribute little to the SCSSM onset in 2019.


2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.


2006 ◽  
Vol 6 ◽  
pp. 139-148 ◽  
Author(s):  
N. K. W. Cheung

Abstract. The abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin during El Niño and La Niña events are studied. Temporal and spatial variations of these anomalous tracks under different phases of ENSO are shown. The anomalies of the pressure field in relation to ENSO circulation for the occurrence of the abruptly recurving cyclone tracks are investigated using fuzzy method. These are supplemented by wind field analyses. It is found that the occurrence of recurving-left (RL) and recurving-right (RR) tropical cyclones under the modification of the steering currents, including the re-adjustment of the westerly trough, the expansion or contraction of the sub-tropical high pressure, the intensifying easterly flow and the strengthening of the cross-equatorial flow, can be in El Niño or La Niña events. Evidently, there is a higher chance of occurrence of anomalous tropical cyclone trajectories in El Niño rather than La Niña events, but there is not any pronounced spatial pattern of anomalous tropical cyclone tracks. By analyzing the pressure-field, it is seen RL (RR) tropical cyclones tend to occur when the subtropical high pressure is weak (strong) in El Niño and La Niña events. More importantly, how the internal force of tropical cyclones changed by the steering current, which relies upon the relative location of tropical cyclones to the re-adjustment of the weather systems, shows when and where RL and RR tropical cyclones occur in El Niño and La Niña events.


2020 ◽  
Vol 33 (8) ◽  
pp. 3271-3288
Author(s):  
Juan Feng ◽  
Wen Chen ◽  
Xiaocong Wang

AbstractThe El Niño Modoki–induced anomalous western North Pacific anticyclone (WNPAC) undergoes an interesting reintensification process in the El Niño Modoki decaying summer, the period when El Niño Modoki decays but warm sea surface temperature (SST) anomalies over the tropical North Atlantic (TNA) and cold SST anomalies over the central-eastern Pacific (CEP) dominate. In this study, the region (TNA or CEP) in which the SST anomalies exert a relatively important influence on reintensification of the WNPAC is investigated. Observational analysis demonstrates that when only anomalous CEP SST cooling occurs, the WNPAC experiences a weak reintensification. In contrast, when only anomalous TNA SST warming emerges, the WNPAC experiences a remarkable reintensification. Numerical simulation analysis demonstrates that even though the same magnitude of CEP SST cooling and TNA warming is respectively set to force the atmospheric general circulation model, the response of the WNPAC is still much stronger in the TNA warming experiment than in the CEP cooling experiment. Further analysis demonstrates that this difference is caused by the distinct location of the effective tropical forcing between the CEP SST cooling and TNA SST warming for producing a WNPAC. The CEP cooling-induced effective anomalous diabatic cooling is located in the central Pacific, by which the forced anticyclone becomes gradually weak from the central Pacific to the western North Pacific. Thus, a weak WNPAC is produced. In contrast, as the TNA SST warming–induced effective anomalous diabatic cooling is just located in the western North Pacific via a Kelvin wave–induced Ekman divergence process, the forced anticyclone is significant and powerful in the western North Pacific.


2016 ◽  
Vol 29 (4) ◽  
pp. 1391-1415 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Thomas Delworth ◽  
Andrew T. Wittenberg ◽  
...  

Abstract This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.


Sign in / Sign up

Export Citation Format

Share Document