scholarly journals Weakened Anomalous Western North Pacific Anticyclone during an El Niño–Decaying Summer under a Warmer Climate: Dominant Role of the Weakened Impact of the Tropical Indian Ocean on the Atmosphere

2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.

2021 ◽  
pp. 1-49
Author(s):  
Xieyuan Wang ◽  
Tim Li ◽  
Chao He

AbstractThrough the diagnosis of 29 Atmospheric Model Inter-comparison Project (AMIP) experiments from the CMIP5 inter-comparison project, we investigate the impact of the mean state on simulated western North Pacific anomalous anticyclone (WNPAC) during El Niño decaying summer. The result indicates that the inter-model difference of the JJA mean precipitation in the Indo-western Pacific warm pool is responsible for the difference of the WNPAC. During the decaying summer of an Eastern Pacific (EP) type El Niño, a model that simulates excessive mean rainfall over the western North Pacific (WNP) reproduces a stronger WNPAC response, through an enhanced local convection-circulation-moisture feedback. The intensity of the simulated WNPAC during the decay summer of a Central Pacific (CP) type El Niño, on the other hand, depends on the mean precipitation over the tropical Indian Ocean. The distinctive WNPAC-mean precipitation relationships between the EP and CP El Niño result from different anomalous SST patterns in the WNP. While the local SST anomaly plays an active role in maintaining the WNPAC during the EP El Niño, it plays a passive role during the CP El Niño. As a result, only the mean-state precipitation/moisture field in the tropical Indian Ocean modulates the circulation anomaly in the WNP in the latter case.


2018 ◽  
Vol 31 (9) ◽  
pp. 3539-3555 ◽  
Author(s):  
Wenping Jiang ◽  
Gang Huang ◽  
Ping Huang ◽  
Kaiming Hu

The northwest Pacific anticyclone (NWPAC) anomalies during post–El Niño summers are a key predictor of the summer climate in East Asia and the northwestern Pacific (NWP). Understanding how this will change under global warming is crucial to project the changes in the variability of the northwest Pacific summer monsoon. Outputs from 18 selected coupled models from phase 5 of the Coupled Model Intercomparison Project show that the anomalous NWPAC response to El Niño will likely be weakened under global warming, which is attributed to the decreased zonal contrast between the tropical Indian Ocean (TIO) warming and the NWP cooling during post–El Niño summers. Under global warming, the NWPAC anomalies during the El Niño mature winter are weakened because of decreased atmospheric circulation in response to El Niño–Southern Oscillation (ENSO), which leads to the weakening of local air–sea interaction and then decreases the cold NWP SST anomalies. Furthermore, the decreased surface heat flux anomalies, the weakened anticyclone anomalies over the southeastern Indian Ocean, and the slackened anomalous easterlies over the north Indian Ocean weaken the warm TIO SST anomalies. However, the strengthened tropospheric temperature anomalies could enhance the anomalous TIO warming. Although the changes in TIO SST anomalies are indistinctive, the weakening of the SST anomaly gradient between the TIO and the NWP is robust to weaken the NWPAC anomalies during post–El Niño summers. Moreover, the positive feedback between the TIO–NWP SST anomalies and the NWPAC anomalies will enhance the weakening of NWPAC under global warming.


2016 ◽  
Vol 29 (20) ◽  
pp. 7189-7201 ◽  
Author(s):  
Fei Liu ◽  
Tim Li ◽  
Hui Wang ◽  
Li Deng ◽  
Yuanwen Zhang

Abstract The authors investigate the effects of El Niño and La Niña on the intraseasonal oscillation (ISO) in the boreal summer (May–October) over the western North Pacific (WNP). It is found that during El Niño summers, the ISO is dominated by a higher-frequency oscillation with a period of around 20–40 days, whereas during La Niña summers the ISO is dominated by a lower-frequency period of around 40–70 days. The former is characterized by northwestward-propagating convection anomalies in the WNP, and the latter is characterized by northward- and eastward-propagating convective signals over the tropical Indian Ocean/Maritime Continent. The possible mechanisms through which El Niño–Southern Oscillation (ENSO)-induced background mean state changes influence the ISO behavior are examined through idealized numerical experiments. It is found that enhanced (weakened) mean moisture and easterly (westerly) vertical wind shear in the WNP during El Niño (La Niña) are the main causes of the strengthened (weakened) 20–40-day northwestward-propagating ISO mode, whereas the 40–70-day ISO initiated from the Indian Ocean can only affect the WNP during La Niña years because the dry (moist) background moisture near the Maritime Continent during El Niño (La Niña) suppresses (enhances) the ISO over the Maritime Continent, and the ISO propagates less over the Maritime Continent during El Niño years than in La Niña years.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shujie Chang ◽  
Min Shao ◽  
Chunhua Shi ◽  
Hua Xu

Based on Remote Sensing Systems-retrieved temperature data in the period of January 1979 to February 2016, the response of stratospheric and tropospheric temperature in boreal winter to two previously defined types of El Niño [spring (SP) and summer (SU)] is investigated. The results show that, the response of temperature under SP onset involves a significant positive anomaly, with a symmetric distribution about the equator over the Indian Ocean region in the lower troposphere (850 hPa) and a negative anomaly in the lower stratosphere (50 hPa). Meanwhile, in the area 30°N and 30°S of the equator, most parts of the lower stratosphere feature a positive anomaly. This indicates that SP El Niño events are more conducive than SU events to warming the lower stratosphere. The atmospheric circulation structure over the tropical Indian Ocean is beneficial to the upward transfer of warm air to the upper layer. In contrast, the structure over the tropical Pacific Ocean favors the warming of upper air. On the other hand, the Eliassen–Palm (EP) flux is small and the heat flux is negative during SP-type events. Thus, the EP flux and Brewer–Dobson circulation decrease, making the temperature higher in the upper troposphere-lower stratosphere region at low latitudes.


2015 ◽  
Vol 28 (4) ◽  
pp. 1383-1395 ◽  
Author(s):  
Riyu Lu ◽  
Shu Lu

Abstract The summer precipitation anomalies over the tropical western North Pacific (WNP), which greatly affect East Asian climate, are closely related to Indian Ocean (IO) SST anomalies, and this WNP–IO relationship is widely assumed to be linear. This study indicates that the IO SST–WNP precipitation relationship is generally linear only when the IO SST anomalies are positive and not when the IO SST anomalies are negative, that is, a strongly cooler IO, in comparison with a moderately cooler IO, does not correspond to stronger precipitation enhancement over the WNP. Further analysis suggests that the phases of ENSO play a crucial role in modifying the impacts of IO SSTs on WNP anomalies. The reverse IO SST–WNP precipitation relationship, which exists without apparent ENSO development/decay, is intensified by El Niño decay through the enhancement of IO SST anomalies, but weakened by El Niño development and La Niña decay through the concurrence of SST anomalies in the tropical central and eastern Pacific. After removing El Niño developing and La Niña decaying cases, the IO SST and WNP precipitation anomalies show a clear linear relationship. Because of the effects of the phases of ENSO, the years of negative precipitation or anticyclonic anomalies over the WNP are highly concentrated over strongly warmer IO and El Niño decaying years, which is consistent with previous studies. However, the years of positive precipitation anomalies are scattered over cooler IO and moderately warmer IO years, implying a complexity of tropical SST forcing on positive WNP precipitation anomalies.


2021 ◽  
pp. 1-41
Author(s):  
Chao He ◽  
Zhenyuan Cui ◽  
Chunzai Wang

AbstractThe anomalous anticyclone over the western North Pacific (WNPAC) is a key atmospheric bridge through which El Niño-Southern Oscillation (ENSO) affects East Asian climate. In this study, the response of the anomalous WNPAC to global warming under the high-emission scenario is investigated based on 40 models from CMIP6 and 30 models from CMIP5. Despite low inter-model consensus, the multi-model median (MMM) of CMIP6 models projects an enhanced anomalous WNPAC but the MMM of CMIP5 models projects a weakened anomalous WNPAC, both of which reach about 0.5 standard deviation of the decadal internal variability derived from the pre-industrial control experiment. As consistently projected by CMIP6 and CMIP5 models, a same magnitude of sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) stimulates a weaker anomalous WNPAC under a warmer climate, and this mechanism is responsible for the weakened anomalous WNPAC based on the CMIP5-MMM. However, the above mechanism is overwhelmed by another mechanism related to the changes in tropical SSTA based on the CMIP6-MMM. As a result of the enhanced warm SSTA over the TIO and the eastward shift of the warm SSTA over the equatorial Pacific during the decaying El Niño, the warm Kelvin wave emanating from the TIO is enhanced along with the stronger zonal SSTA gradient based on the CMIP6-MMM, enhancing the anomalous WNPAC. The diverse changes in the zonal SSTA gradient between the TIO and the equatorial western Pacific also explain the inter-model diversity of the changes in anomalous WNPAC.


2010 ◽  
Vol 23 (11) ◽  
pp. 2974-2986 ◽  
Author(s):  
Bo Wu ◽  
Tim Li ◽  
Tianjun Zhou

Abstract To investigate the relative role of the cold SST anomaly (SSTA) in the western North Pacific (WNP) or Indian Ocean basin mode (IOBM) in maintaining an anomalous anticyclone over the western North Pacific (WNPAC) during the El Niño decaying summer, a suite of numerical experiments is performed using an atmospheric general circulation model, ECHAM4. In sensitive experiments, the El Niño composite SSTA is specified in either the WNP or the tropical Indian Ocean, while the climatological SST is specified elsewhere. The results indicate that the WNPAC is maintained by the combined effects of the local forcing of the negative SSTA in the WNP and the remote forcing from the IOBM. The former (latter) contribution gradually weakens (enhances) from June to August. The negative SSTA in the WNP is crucial for the maintenance of the WNPAC in early summer. However, because of a negative air–sea feedback, the negative SSTA gradually decays, as does the local forcing effect. Enhanced local convection associated with the IOBM stimulates atmospheric Kelvin waves over the equatorial western Pacific. The impact of the Kelvin waves on the WNP circulation depends on the formation of the climatological WNP monsoon trough, which does not fully establish until late summer. Therefore, the IOBM plays a crucial role in late summer via the Kelvin wave induced anticyclonic shear and boundary layer divergence.


2018 ◽  
Vol 31 (17) ◽  
pp. 7019-7034 ◽  
Author(s):  
Jiepeng Chen ◽  
Xin Wang ◽  
Wen Zhou ◽  
Chunzai Wang ◽  
Qiang Xie ◽  
...  

Previous research has suggested that the anomalous western North Pacific anticyclone (WNPAC) can generally persist from an El Niño mature winter to the subsequent summer, influencing southern China precipitation significantly, where southern China includes the Yangtze River valley and South China. Since the late 1970s, three extreme El Niño events have been recorded: 1982/83, 1997/98, and 2015/16. There was a sharp contrast in the change in southern China rainfall and corresponding atmospheric circulations in the decaying August between the 2015/16 extreme El Niño event and the earlier two extreme El Niño events. Enhanced rainfall in the middle and upper reaches of the Yangtze River and suppressed rainfall over South China resulted from basinwide warming in the tropical Indian Ocean induced by the extreme El Niño in August 1983 and 1998, which was consistent with previous studies. However, an anomalous western North Pacific cyclone emerged in August 2016 and then caused positive rainfall anomalies over South China and negative rainfall anomalies from the Yangtze River to the middle and lower reaches of the Yellow River. Without considering the effect of the long-term global warming trend, in August 2016 the negative SST anomalies over the western Indian Ocean and cooling in the north tropical Atlantic contributed to the anomalous western North Pacific cyclone and a rainfall anomaly pattern with opposite anomalies in South China and the Yangtze River region. Numerical experiments with the CAM5 model are conducted to confirm that cooler SST in the western Indian Ocean contributed more than cooler SST in the north tropical Atlantic to the anomalous western North Pacific cyclone and anomalous South China rainfall.


2020 ◽  
Vol 33 (19) ◽  
pp. 8487-8505
Author(s):  
Xinyu Li ◽  
Riyu Lu

AbstractThe meridional teleconnection over the western North Pacific and East Asia (WNP–EA) plays a predominant role in affecting the interannual variability of East Asian climate in summer. This study identified a breakdown of the meridional teleconnection since the early 2000s. Before the early 2000s, there are close tropical–extratropical relationships in light of both circulation and rainfall anomalies. For instance, the westward extension of the western North Pacific subtropical high (WNPSH) is closely associated with the southward shift of the East Asian westerly jet (EAJ), and more rainfall in the tropical WNP closely corresponds to less rainfall in the subtropical WNP–EA. However, after the early 2000s, the tropical–extratropical relationships are absent. Particularly, the tropical WNP precipitation anomalies can induce WNPSH anomalies, but the WNPSH anomalies cannot induce subtropical precipitation in the latter period, due to the absence of EAJ-related extratropical circulation anomalies. Further results indicate that in the latter period, the westward extension of the WNPSH is associated with the decay of central Pacific-like El Niño, and simultaneous summer sea surface temperature (SST) anomalies in the central eastern Pacific favor the northward shift of the EAJ, resulting in the disruption of the WNPSH–EAJ relationship. This evolution of tropical SSTs is sharply different from the decay of canonical El Niño and simultaneous summer tropical Indian Ocean warming, which favor the WNPSH–EAJ correspondence in the former period.


Sign in / Sign up

Export Citation Format

Share Document