Evaluating Antarctic sea ice variability and its teleconnections in global climate models

2002 ◽  
Vol 22 (8) ◽  
pp. 885-900 ◽  
Author(s):  
Jiping Liu ◽  
Douglas G. Martinson ◽  
Xiaojun Yuan ◽  
David Rind
2018 ◽  
Vol 52 (5-6) ◽  
pp. 2775-2797 ◽  
Author(s):  
Sylvain Marchi ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Violette Zunz ◽  
Steffen Tietsche ◽  
...  

2020 ◽  
Author(s):  
Kate E. Ashley ◽  
James A. Bendle ◽  
Robert McKay ◽  
Johan Etourneau ◽  
Francis J. Jimenez-Espejo ◽  
...  

Abstract. Over recent decades Antarctic sea-ice extent has increased, alongside widespread ice shelf thinning and freshening of waters along the Antarctic margin. In contrast, Earth system models generally simulate a decrease in sea ice. Circulation of water masses beneath large cavity ice shelves is not included in current models and may be a driver of this phenomena. We examine a Holocene sediment core off East Antarctica that records the Neoglacial transition, the last major baseline shift of Antarctic sea-ice, and part of a late-Holocene global cooling trend. We provide a multi-proxy record of Holocene glacial meltwater input, sediment transport and sea-ice variability which includes. Our record, supported by high-resolution ocean modelling, shows that a rapid Antarctic sea-ice increase occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to supercooling of surface waters and sea-ice growth which slowed basal ice shelf melting. Incorporating this feedback mechanism into global climate models will be important for future projections of Antarctic changes.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


2021 ◽  
Author(s):  
Christoph Braun ◽  
Aiko Voigt ◽  
Johannes Hörner ◽  
Joaquim G. Pinto

<p>Stable waterbelt climate states with close to global ice cover challenge the classical Snowball Earth hypothesis because they provide a robust explanation for the survival of advanced marine species during the Neoproterozoic glaciations (1000 – 541 Million years ago). Whether Earth’s climate stabilizes in a waterbelt state or rushes towards a Snowball state is determined by the magnitude of the ice-albedo feedback in the subtropics, where dark, bare sea ice instead of snow-covered sea ice prevails. For a given bare sea-ice albedo, the subtropical ice-albedo feedback and thus the stable range of the waterbelt climate regime is sensitive to the albedo over ice-free ocean, which is largely determined by shortwave cloud-radiative effects (CRE). In the present-day climate, CRE are known to dominate the spread of climate sensitivity across global climate models. We here study the impact of uncertainty associated with CRE on the existence of geologically relevant waterbelt climate regimes using two global climate models and an idealized energy balance model. We find that the stable range of the waterbelt climate regime is very sensitive to the abundance of subtropical low-level mixed-phase clouds. If subtropical cloud cover is low, climate sensitivity becomes so high as to inhibit stable waterbelt states.</p><p>The treatment of mixed-phase clouds is highly uncertain in global climate models. Therefore we aim to constrain the uncertainty associated with their CRE by means of a hierarchy of global and regional simulations that span horizontal grid resolutions from 160 km to 300m, and in particular include large eddy simulations of subtropical mixed-phase clouds located over a low-latitude ice edge. In the cold waterbelt climate subtropical CRE arise from convective events caused by strong meridional temperature gradients and stratocumulus decks located in areas of large-scale descending motion. We identify the latter to dominate subtropical CRE and therefore focus our large eddy simulations on subtropical stratocumulus clouds. By conducting simulations with two extreme scenarios for the abundance of atmospheric mineral dust, which serves as ice-nucleating particles and therefore can control mixed-phase cloud physics, we aim to estimate the possible spread of CRE associated with subtropical mixed-phase clouds. From this estimate we may assess whether Neoproterozoic low-level cloud abundance may have been high enough to sustain a stable waterbelt climate regime.</p>


Climate ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Ge Peng ◽  
Jessica L. Matthews ◽  
Muyin Wang ◽  
Russell Vose ◽  
Liqiang Sun

The prospect of an ice-free Arctic in our near future due to the rapid and accelerated Arctic sea ice decline has brought about the urgent need for reliable projections of the first ice-free Arctic summer year (FIASY). Together with up-to-date observations and characterizations of Arctic ice state, they are essential to business strategic planning, climate adaptation, and risk mitigation. In this study, the monthly Arctic sea ice extents from 12 global climate models are utilized to obtain projected FIASYs and their dependency on different emission scenarios, as well as to examine the nature of the ice retreat projections. The average value of model-projected FIASYs is 2054/2042, with a spread of 74/42 years for the medium/high emission scenarios, respectively. The earliest FIASY is projected to occur in year 2023, which may not be realistic, for both scenarios. The sensitivity of individual climate models to scenarios in projecting FIASYs is very model-dependent. The nature of model-projected Arctic sea ice coverage changes is shown to be primarily linear. FIASY values predicted by six commonly used statistical models that were curve-fitted with the first 30 years of climate projections (2006–2035), on other hand, show a preferred range of 2030–2040, with a distinct peak at 2034 for both scenarios, which is more comparable with those from previous studies.


1998 ◽  
Vol 27 ◽  
pp. 427-432 ◽  
Author(s):  
Anthony P. Worby ◽  
Xingren Wu

The importance of monitoring sea ice for studies of global climate has been well noted for several decades. Observations have shown that sea ice exhibits large seasonal variability in extent, concentration and thickness. These changes have a significant impact on climate, and the potential nature of many of these connections has been revealed in studies with numerical models. An accurate representation of the sea-ice distribution (including ice extent, concentration and thickness) in climate models is therefore important for modelling global climate change. This work presents an overview of the observed sea-ice characteristics in the East Antarctic pack ice (60-150° E) and outlines possible improvements to the simulation of sea ice over this region by modifying the ice-thickness parameterisation in a coupled sea-ice-atmosphere model, using observational data of ice thickness and concentration. Sensitivity studies indicate that the simulation of East Antarctic sea ice can be improved by modifying both the “lead parameterisation” and “rafting scheme” to be ice-thickness dependent. The modelled results are currently out of phase with the observed data, and the addition of a multilevel ice-thickness distribution would improve the simulation significantly.


2014 ◽  
Vol 41 (3) ◽  
pp. 1035-1043 ◽  
Author(s):  
S. Tietsche ◽  
J. J. Day ◽  
V. Guemas ◽  
W. J. Hurlin ◽  
S. P. E. Keeley ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


Sign in / Sign up

Export Citation Format

Share Document