scholarly journals Role of dexamethasone in the long-term functional maturation of MSC-laden hyaluronic acid hydrogels for cartilage tissue engineering

2017 ◽  
Vol 36 (6) ◽  
pp. 1717-1727 ◽  
Author(s):  
Minwook Kim ◽  
Sean T. Garrity ◽  
David R. Steinberg ◽  
George R. Dodge ◽  
Robert L. Mauck
Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 714
Author(s):  
Alvin Kai-Xing Lee ◽  
Yen-Hong Lin ◽  
Chun-Hao Tsai ◽  
Wan-Ting Chang ◽  
Tsung-Li Lin ◽  
...  

Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.


2018 ◽  
Vol 9 (28) ◽  
pp. 3959-3960 ◽  
Author(s):  
Feng Yu ◽  
Xiaodong Cao ◽  
Yuli Li ◽  
Lei Zeng ◽  
Bo Yuan ◽  
...  

Correction for ‘An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry”’ by Feng Yu et al., Polym. Chem., 2014, 5, 1082–1090.


Biomaterials ◽  
2010 ◽  
Vol 31 (11) ◽  
pp. 3103-3113 ◽  
Author(s):  
R. Jin ◽  
L.S. Moreira Teixeira ◽  
P.J. Dijkstra ◽  
C.A. van Blitterswijk ◽  
M. Karperien ◽  
...  

2014 ◽  
Vol 10 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Peter A. Levett ◽  
Ferry P.W. Melchels ◽  
Karsten Schrobback ◽  
Dietmar W. Hutmacher ◽  
Jos Malda ◽  
...  

2011 ◽  
Vol 17 (7) ◽  
pp. 717-730 ◽  
Author(s):  
Clara R. Correia ◽  
Liliana S. Moreira-Teixeira ◽  
Lorenzo Moroni ◽  
Rui L. Reis ◽  
Clemens A. van Blitterswijk ◽  
...  

2011 ◽  
pp. 110308075242061
Author(s):  
Clara Correia ◽  
Liliana S MoreiraTeixeira ◽  
Lorenzo Moroni ◽  
Rui L. Reis ◽  
Clemens van Blitterswijk ◽  
...  

Author(s):  
Ming-You Shie ◽  
Wen-Ching Chang ◽  
Li-Ju Wei ◽  
Yu-Hsin Huang ◽  
Chien-Han Chen ◽  
...  

Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is the limitation in self-repair ability of cartilage. Therefore, developing the strategies for cartilage repair is very important. Here, we reported a new manufacturing process of water-based polyurethane based photosensitive materials with hyaluronic acid and applied the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton's jelly mesenchymal stem cells (hWJMSCs) and the cells showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and facilitate the development of cartilage tissue engineering.


Author(s):  
C. C. van Donkelaar ◽  
M. Khoshgoftar ◽  
L. M. Kock ◽  
K. Ito

Tissue engineered cartilage has reached the level of maturity where the cells, either chondrocytes, BMSC’s or other cells are stimulated to produce a tissue of which the biochemical content qualitatively resembles that of native cartilage. Quantitatively, the proteoglycan content approaches that of native content in long term cultures, but to obtain native collagen fractions is still challenging. Engineered cartilage matrix is either homogeneously distributed, or shows gradual variation from the periphery to the center, caused by nutritional effects.


Sign in / Sign up

Export Citation Format

Share Document