hybrid scaffolds
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 97)

H-INDEX

41
(FIVE YEARS 8)

2021 ◽  
Vol 22 (24) ◽  
pp. 13481
Author(s):  
Cartwright Nelson ◽  
Slesha Tuladhar ◽  
Loren Launen ◽  
MD Ahasan Habib

Maintaining shape fidelity of 3D bio-printed scaffolds with soft biomaterials is an ongoing challenge. Here, a rheological investigation focusing on identifying useful physical and mechanical properties directly related to the geometric fidelity of 3D bio-printed scaffolds is presented. To ensure during- and post-printing shape fidelity of the scaffolds, various percentages of Carboxymethyl Cellulose (CMC) (viscosity enhancer) and different calcium salts (CaCl2 and CaSO4, physical cross-linkers) were mixed into alginate before extrusion to realize shape fidelity. The overall solid content of Alginate-Carboxymethyl Cellulose (CMC) was limited to 6%. A set of rheological tests, e.g., flow curves, amplitude tests, and three interval thixotropic tests, were performed to identify and compare the shear-thinning capacity, gelation points, and recovery rate of various compositions. The geometrical fidelity of the fabricated scaffolds was defined by printability and collapse tests. The effect of using multiple cross-linkers simultaneously was assessed. Various large-scale scaffolds were fabricated (up to 5.0 cm) using a pre-crosslinked hybrid. Scaffolds were assessed for the ability to support the growth of Escherichia coli using the Most Probable Number technique to quantify bacteria immediately after inoculation and 24 h later. This pre-crosslinking-based rheological property controlling technique can open a new avenue for 3D bio-fabrication of scaffolds, ensuring proper geometry.


Author(s):  
Benlin Sun ◽  
Lei Hou ◽  
Binbin Sun ◽  
Yu Han ◽  
Yunqing Zou ◽  
...  

The fabrication of tissue-engineered vascular grafts to replace damaged vessels is a promising therapy for cardiovascular diseases. Endothelial remodeling in the lumen of TEVGs is critical for successful revascularization. However, the construction of well-functioning TEVGs remains a fundamental challenge. Herein, chiral hybrid scaffolds were prepared by electrospinning using D/L-phenylalanine based gelators [D(L)PHEG] and poly-ε-caprolactone (PCL). The chirality of scaffolds significantly affected the endothelial remodeling progress of TEVGs. Compared with L-phenylalanine based gelators/poly-ε-caprolactone (L/PCL) and PCL, D-phenylalanine based gelators/poly-ε-caprolactone (D/PCL) scaffolds enhanced cell adhesion, and proliferation and upregulated the expression of fibronectin-1, and vinculin. These results suggests that chiral hybrid scaffolds can promote endothelial remodeling of TEVGs by upregulating adhesion-associated protein levels. This study offers an innovative strategy for endothelial remodeling of TEVGs by fabricating chiral hybrid scaffolds, and provides new insight for the treatment of cardiovascular diseases.


2021 ◽  
Vol 9 ◽  
Author(s):  
He Xia ◽  
Lun Dong ◽  
Min Hao ◽  
Yuan Wei ◽  
Jiazhi Duan ◽  
...  

Cancellous bone plays an indispensable role in the skeletal system due to its various functions and high porosity. In this work, chitosan and hydroxyapatite nanowires (CS@HAP NWs) hybrid nanostructured scaffolds with suitable mechanical properties, high porosity and a fine porous structure were prepared to simulate the 3-dimensional structure of cancellous bone. The 3D-hybrid scaffolds promote cell adhesion and the migration of human adipose-derived stem cells (hADSCs) inside the scaffolds. The cavities in the scaffolds provide space for the hADSCs proliferation and differentiation. Moreover, the various contents of HAP and the induced mechanical property changes regulate the differentiation of hADSCs toward osteoblasts. Overall, cellular fate regulation of hADSCs via rationally engineered HAP-based hybrid scaffolds is a facile and effective approach for bone tissue engineering.


2021 ◽  
Vol 8 (11) ◽  
pp. 178
Author(s):  
Peter Viktor Hauser ◽  
Hsiao-Min Chang ◽  
Masaki Nishikawa ◽  
Hiroshi Kimura ◽  
Norimoto Yanagawa ◽  
...  

In recent years, tissue engineering has achieved significant advancements towards the repair of damaged tissues. Until this day, the vascularization of engineered tissues remains a challenge to the development of large-scale artificial tissue. Recent breakthroughs in biomaterials and three-dimensional (3D) printing have made it possible to manipulate two or more biomaterials with complementary mechanical and/or biological properties to create hybrid scaffolds that imitate natural tissues. Hydrogels have become essential biomaterials due to their tissue-like physical properties and their ability to include living cells and/or biological molecules. Furthermore, 3D printing, such as dispensing-based bioprinting, has progressed to the point where it can now be utilized to construct hybrid scaffolds with intricate structures. Current bioprinting approaches are still challenged by the need for the necessary biomimetic nano-resolution in combination with bioactive spatiotemporal signals. Moreover, the intricacies of multi-material bioprinting and hydrogel synthesis also pose a challenge to the construction of hybrid scaffolds. This manuscript presents a brief review of scaffold bioprinting to create vascularized tissues, covering the key features of vascular systems, scaffold-based bioprinting methods, and the materials and cell sources used. We will also present examples and discuss current limitations and potential future directions of the technology.


2021 ◽  
Vol 130 ◽  
pp. 112434
Author(s):  
Farnaz Ghorbani ◽  
Behafarid Ghalandari ◽  
Melika Sahranavard ◽  
Ali Zamanian ◽  
Maurice N. Collins

Author(s):  
Büsra Baskapan ◽  
Anthony Callanan

Abstract BACKGROUND: Today’s treatment options for renal diseases fall behind the need, as the number of patients has increased considerably over the last few decades. Tissue engineering (TE) is one avenue which may provide a new approach for renal disease treatment. This involves creating a niche where seeded cells can function in an intended way. One approach to TE is combining natural extracellular matrix proteins with synthetic polymers, which has been shown to have many positives, yet a little is understood in kidney. Herein, we investigate the incorporation of laminin into polycaprolactone electrospun scaffolds. METHOD: The scaffolds were enriched with laminin via either direct blending with polymer solution or in a form of emulsion with a surfactant. Renal epithelial cells (RC-124) were cultured on scaffolds up to 21 days. RESULTS: Mechanical characterization demonstrated that the addition of the protein changed Young’s modulus of polymeric fibres. Cell viability and DNA quantification tests revealed the capability of the scaffolds to maintain cell survival up to 3 weeks in culture. Gene expression analysis indicated healthy cells via three key markers. CONCLUSION: Our results show the importance of hybrid scaffolds for kidney tissue engineering.


2021 ◽  
Vol 5 (10) ◽  
pp. 281
Author(s):  
Matthias Ahlhelm ◽  
Sergio H. Latorre ◽  
Hermann O. Mayr ◽  
Christiane Storch ◽  
Christian Freytag ◽  
...  

The authors report on the manufacturing of mechanically stable β-tricalcium phosphate (β-TCP) structural hybrid scaffolds via the combination of additive manufacturing (CerAM VPP) and Freeze Foaming for engineering a potential bone replacement. In the first step, load bearing support structures were designed via FE simulation and 3D printed by CerAM VPP. In the second step, structures were foamed-in with a porous and degradable calcium phosphate (CaP) ceramic that mimics porous spongiosa. For this purpose, Fraunhofer IKTS used a process known as Freeze Foaming, which allows the foaming of any powdery material and the foaming-in into near-net-shape structures. Using a joint heat treatment, both structural components fused to form a structural hybrid. This bone construct had a 25-fold increased compressive strength compared to the pure CaP Freeze Foam and excellent biocompatibility with human osteoblastic MG-63 cells when compared to a bone grafting Curasan material for benchmark.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3470
Author(s):  
Marfa N. Egorikhina ◽  
Irina I. Bronnikova ◽  
Yulia P. Rubtsova ◽  
Irina N. Charykova ◽  
Marina L. Bugrova ◽  
...  

The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin–collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.


Nano LIFE ◽  
2021 ◽  
Author(s):  
Haoran Sun ◽  
Qilong Zhao ◽  
Li-Wu Zheng ◽  
William W. Lu ◽  
Min Wang

Electrospun fibrous scaffolds attract great attention in tissue engineering owing to their high similarity in architecture to the extracellular matrix (ECM) that support cell attachment and growth in human bodies. Although they have shown superiority in promoting cell attachment and proliferation on their surfaces and hence, hold great promise for the regeneration of body tissues, the research still faces a great challenge of three-dimensional (3D) cell incorporation in electrospun scaffolds to form thick and cell-dense constructs because deep cell infiltration is hard to achieve in conventional electrospun scaffolds that normally have very small diameters of interconnected pores. Such hindrance has severely limited the clinical application of electrospun fibrous scaffolds to repair/regenerate various body tissues, particularly those with complex anatomies. To address this challenge, we have developed a concurrent cell electrospinning and emulsion electrospinning technique for fabricating bioactive bio-hybrid scaffolds with 3D and high-density cell incorporation. Through concurrent electrospinning, cell-encapsulated hydrogel fibers (“cell fibers”) and growth factor-containing ultrafine fibers are simultaneously deposited to form two-component scaffolds (i.e., scaffolds composed of two types of fibers) according to the design. With the breakup of cell fibers, live cells with well-preserved cell viability are released in situ inside the scaffolds, resulting in the creation of cell-incorporated bioactive scaffolds with ECM-mimicking fibrous architectures and 3D and high-density incorporation of cells. The growth and functions of incorporated cells in the scaffolds can be enhanced by the released growth factor from the emulsion electrospun fibrous component. The bioactive bio-hybrid scaffolds fabricated via concurrent electrospinning mimic the cell-matrix organization of body tissues and therefore have great potential for regenerating body tissues such as tendon and ligament.


Sign in / Sign up

Export Citation Format

Share Document