Response of mid-latitude North Pacific surface temperatures to orbital forcing and linkage to the East Asian summer monsoon and tropical ocean-atmosphere interactions

2009 ◽  
Vol 24 (8) ◽  
pp. 836-847 ◽  
Author(s):  
Masanobu Yamamoto
2020 ◽  
Vol 37 (7) ◽  
pp. 1231-1249
Author(s):  
Yun Zhang ◽  
Zuhang Wu ◽  
Lifeng Zhang ◽  
Yanqiong Xie ◽  
Yanbin Huang ◽  
...  

AbstractRaindrop size distribution (DSD) characteristics during the East Asian summer monsoon (EASM) were studied, using measurements from three OTT Particle Size Velocity (Parsivel) disdrometers in Nanjing, Chuzhou, and the northwestern Pacific (NWP), respectively. Western and eastern parts of the monsoon rainband were separated for a comparative study of the DSD variability. Along with disdrometer data, GPM Dual-Frequency Precipitation Radar (DPR), Fengyun-2E (FY-2E), MODIS, GPCP, ERA-Interim, and in situ radiosonde datasets are combined to illustrate the possible microphysical mechanisms for the significant DSD variability in two parts, in terms of convective intensity, cloud structure, and aerosol effects. The DSD characteristics of six rain-rate classes and two rainfall categories (convective and stratiform) were studied. The western part has larger mass-weighted mean diameter Dm while smaller normalized intercept log10(Nw) than the eastern part, and the convective clusters of the western part (land) could be identified more maritime-like than continental-like due to moisture transport from the tropical ocean, while that of the eastern part (sea) is between maritime-like and continental-like. Cross validation of GPM rainfall products are implemented based on surface disdrometer observations. DPR products manifest better performance over sea than land areas of the EASM rainband. Empirical Dm–Ze and Nw–Dm relations were also derived preliminarily to improve the GPM rain-retrieval algorithms in the EASM season.


2019 ◽  
Vol 32 (10) ◽  
pp. 2735-2745 ◽  
Author(s):  
Chunhan Jin ◽  
Jian Liu ◽  
Bin Wang ◽  
Mi Yan ◽  
Liang Ning

Statistical evidence suggests that solar activity may affect the atmospheric circulation over East Asia (EA), but the way in which the 11-yr solar radiation cycle affects the East Asian summer monsoon (EASM) remains unexplained. Based on one control experiment and four solar-only forcing experiments performed during the Community Earth System Model–Last Millennium Ensemble (CESM-LME) model project, we explore the potential impacts of the 11-yr solar cycle on EASM variability and the physical processes through which solar forcing influences EASM decadal variability. The model results show that the warm season [May–September (MJJAS)] mean precipitation over EA exhibits significant decadal variation with a “northern wet–southern dry” pattern during peak years in the strong 11-yr solar cycle epoch (AD 900–1285), which is in contrast to the absence of decadal signals during the weak 11-yr solar cycle epoch (AD 1400–1535). For the four-member ensemble averaged solar-only forcing experiment, the summer mean precipitation over northern EA is significantly correlated with the solar forcing ( r = 0.414, n = 68, p < 0.05) on a decadal time scale during the strong cycle epoch, whereas there is no statistical link between the EASM and solar activity during the weak cycle epoch ( r = 0.002, n = 24). A strong, 11-yr solar cycle is also shown to excite an anomalous sea surface temperature (SST) pattern that resembles a cool Pacific decadal oscillation (PDO) phase, which has a significant 11-yr periodicity. The associated anomalous North Pacific anticyclone dominates the entire extratropical North Pacific and enhances the southerly monsoon over EA, which results in abundant rainfall over northern EA. We argue that the 11-yr solar cycle affects the EASM decadal variation through excitation of a coupled decadal mode in the Asia–North Pacific region.


2020 ◽  
Vol 33 (15) ◽  
pp. 6651-6672
Author(s):  
Shangfeng Chen ◽  
Wen Chen ◽  
Renguang Wu ◽  
Linye Song

AbstractPrevious studies indicated that spring Arctic Oscillation (AO) can influence the following East Asian summer monsoon (EASM). This study reveals that the Atlantic multidecadal oscillation (AMO) has a pronounced modulation of the spring AO–EASM connection. Spring AO has a close relation with the EASM during the negative AMO (−AMO) phase. However, during the positive AMO (+AMO) phase, the spring AO–EASM connection is weak. During the −AMO phase, a marked dipole atmospheric anomaly pattern (with an anticyclonic anomaly over the midlatitudes and a cyclonic anomaly over the subtropics) and a pronounced tripole sea surface temperature (SST) anomaly pattern is formed in the North Pacific during positive spring AO years. The cyclonic anomaly, SST, and precipitation anomalies over the subtropical western North Pacific (WNP) maintain and propagate southwestward in the following summer via a positive air–sea feedback, which further impacts the EASM variation. During the +AMO phase, the Pacific center of the spring AO (i.e., the anticyclonic anomaly over the midlatitudes) is weak. As such, the cyclonic anomaly cannot be induced over the subtropical WNP by the spring AO via wave–mean flow interaction. Hence, the spring AO–EASM connection disappears during the +AMO phase. The AMO impacts the Pacific center of the spring AO via modulating the Aleutian low intensity and North Pacific storm track intensity. The observed AMO modulation of the spring AO–EASM connection and Pacific center of the spring AO can be captured by the long historical simulation in a coupled global climate model.


2021 ◽  
pp. 1-54
Author(s):  
Wen Chen ◽  
Kaiming Hu ◽  
Shangfeng Chen

Abstract The tropospheric biennial oscillation (TBO) of East Asian summer monsoon (EASM) has major impacts on East Asian climate. Here it is shown that, since the late-1970s, the TBO signal of EASM has strengthened significantly. The EASM TBO in wind anomalies undergoes a transition from a cyclone over the western North Pacific (WNPC) in preceding summer to an anticyclone over the western North Pacific (WNPAC) in following summer, with the anomalies strengthening remarkably after the late-1970s. Correspondingly, the biennial component of precipitation anomalies in eastern China show different distributions. Both observational and numerical simulation analyses demonstrate that these changes are caused by the westward shift of El Niño warming and enhanced Indo-Pacific and Atlantic-Pacific coupling. The positive sea surface temperature (SST) anomalies associated with the TBO of EASM shift toward the central Pacific after the late-1970s, which favor the strengthening of the WNPC and cause a weakened EASM. In following summer, both the north Indian Ocean and tropical north Atlantic SST warming are closely coupled with El Niño since the late-1970s, which favor the strengthening of WNPAC and cause an intensified EASM. Together, these changes provide more favorable background state for the transition of circulation anomalies over the western North Pacific, giving rise to enhanced biennial variability in EASM in the late-1970s.


2020 ◽  
Vol 33 (22) ◽  
pp. 9721-9733
Author(s):  
Chao He ◽  
Wen Zhou

AbstractSoutherly wind in the lower troposphere is an essential feature of East Asian summer monsoon (EASM) circulation, which is reported to be enhanced under global warming scenarios and interglacial epochs. Based on an analysis of an ensemble of CMIP6 models, this study shows that the magnitude of intensification of the EASM circulation is much smaller under global warming scenarios than during interglacial epochs. Distinct changes in the western North Pacific subtropical high (WNPSH) are responsible for the different responses of the EASM circulation. The WNPSH is substantially enhanced during interglacial epochs, which acts to strengthen the southerly wind associated with the EASM on the western flank of the WNPSH. However, the change in the WNPSH is insignificant and cannot strengthen the EASM under global warming scenarios, and the weakly enhanced EASM circulation may be a direct response to intensified heating over the Tibetan Plateau. The land–ocean thermal contrast explains the different responses of the WNPSH. During interglacial epochs, the summertime surface warming over the subtropical North Pacific is much weaker than over Eurasia due to the large thermal inertia of the ocean to increased insolation, and the WNPSH is intensified as a response to the suppressed latent heating over the subtropical North Pacific. The fast response of the WNPSH to abrupt quadrupling of CO2 without sufficient ocean warming is an analog to the interglacial epochs, but it is offset by the effect of slow oceanic warming, resulting in an insignificant change of the WNPSH under global warming scenarios.


Sign in / Sign up

Export Citation Format

Share Document