scholarly journals LGM ice extent and deglaciation history in the Gurktal and Lavantal Alps (eastern European Alps): first constraints from 10 Be surface exposure dating of glacially polished quartz veins

Author(s):  
Andreas Wölfler ◽  
Andrea Hampel ◽  
Armin Dielforder ◽  
Ralf Hetzel ◽  
Christoph Glotzbach
2020 ◽  
Vol 232 ◽  
pp. 02002
Author(s):  
Walter Kutschera ◽  
Gernot Patzelt ◽  
Joerg M. Schaefer ◽  
Christian Schlüchter ◽  
Peter Steier ◽  
...  

A brief review of the movements of Alpine glaciers throughout the Holocene in the Northern Hemisphere (European Alps) and in the Southern Hemisphere (New Zealand Southern Alps) is presented. It is mainly based on glacier studies where 14C dating, dendrochronology and surface exposure dating with cosmogenic isotopes is used to establish the chronology of advances and retreats of glaciers. An attempt is made to draw some general conclusions on the temperature and climate differences between the Northern and Southern Hemisphere.


2021 ◽  
Author(s):  
Sandra M. Braumann ◽  
Joerg M. Schaefer ◽  
Stephanie M. Neuhuber ◽  
Christopher Lüthgens ◽  
Alan J. Hidy ◽  
...  

Abstract. Glaciers preserve climate variations in their geological and geomorphological records, which makes them prime candidates for climate reconstructions. Investigating the glacier-climate system over the past millennia is particularly relevant because, first, the amplitude and frequency of natural climate variability during the Holocene provides the climatic context against which modern, human-induced climate change must be assessed. Second, the transition from the last glacial to the current interglacial promises important insights into the climate system during warming, which is of particular interest with respect to ongoing climate change. Evidence of stable ice margin positions that record cooling during the past 12 ka are preserved in two glaciated valleys of the Silvretta Massif in the Eastern European Alps, the Jamtal (JAM) and the Laraintal (LAR). We mapped and dated moraines in these catchments including historical ridges using Beryllium-10 Surface Exposure Dating (10Be SED) techniques, and correlate resulting moraine formation intervals with climate proxy records to evaluate the spatial and temporal scale of these cold phases. The new geochronologies indicate two moraine formation intervals (MFI) during the Early Holocene (EH): 10.8 ± 0.7 ka (n = 9) and 11.2 ± 0.8 ka (n = 12). Boulder ages along historical moraines (n = 6) imply at least two glacier advances during the Little Ice Age (LIA; c. 1250–1850 CE), around 1300 CE and in the second half of the 18th century. An earlier advance to the same position may have occurred around 500 CE. The Jamtal and Laraintal moraine chronologies provide evidence that millennial scale EH warming was superimposed by centennial scale cooling. The timing of EH moraine formation is contemporaneous with brief temperature drops identified in local and regional paleoproxy records, most prominently with the Preboreal Oscillation (PBO), and is consistent with moraine deposition in other catchments in the European Alps, and in the Arctic region. This consistency points to cooling beyond the local scale and therefore a regional or even hemispheric climate driver. Freshwater input sourced from the Laurentide Ice Sheet (LIS), which changed circulation patterns in the North Atlantic, is a plausible explanation for EH cooling and moraine formation in the Nordic region and in Europe.


2021 ◽  
Vol 17 (6) ◽  
pp. 2451-2479
Author(s):  
Sandra M. Braumann ◽  
Joerg M. Schaefer ◽  
Stephanie M. Neuhuber ◽  
Christopher Lüthgens ◽  
Alan J. Hidy ◽  
...  

Abstract. Glaciers preserve climate variations in their geological and geomorphological records, which makes them prime candidates for climate reconstructions. Investigating the glacier–climate system over the past millennia is particularly relevant first because the amplitude and frequency of natural climate variability during the Holocene provides the climatic context against which modern, human-induced climate change must be assessed. Second, the transition from the last glacial to the current interglacial promises important insights into the climate system during warming, which is of particular interest with respect to ongoing climate change. Evidence of stable ice margin positions that record cooling during the past 12 kyr are preserved in two glaciated valleys of the Silvretta Massif in the eastern European Alps, the Jamtal (JAM) and the Laraintal (LAR). We mapped and dated moraines in these catchments including historical ridges using beryllium-10 surface exposure dating (10Be SED) techniques and correlate resulting moraine formation intervals with climate proxy records to evaluate the spatial and temporal scale of these cold phases. The new geochronologies indicate the formation of moraines during the early Holocene (EH), ca. 11.0 ± 0.7 ka (n = 19). Boulder ages along historical moraines (n = 6) suggest at least two glacier advances during the Little Ice Age (LIA; ca. 1250–1850 CE) around 1300 CE and in the second half of the 18th century. An earlier advance to the same position may have occurred around 500 CE. The Jamtal and Laraintal moraine chronologies provide evidence that millennial-scale EH warming was superimposed by centennial-scale cooling. The timing of EH moraine formation coincides with brief temperature drops identified in local and regional paleoproxy records, most prominently with the Preboreal Oscillation (PBO) and is consistent with moraine deposition in other catchments in the European Alps and in the Arctic region. This consistency points to cooling beyond the local scale and therefore a regional or even hemispheric climate driver. Freshwater input sourced from the Laurentide Ice Sheet (LIS), which changed circulation patterns in the North Atlantic, is a plausible explanation for EH cooling and moraine formation in the Nordic region and in Europe.


2015 ◽  
Vol 83 (1) ◽  
pp. 178-186 ◽  
Author(s):  
Markus Fuchs ◽  
Rebecca Reverman ◽  
Lewis A. Owen ◽  
Kurt L. Frankel

AbstractLarge alluvial fans characterize the piedmonts of the White Mountains, California–Nevada, USA, with large boulders strewn across their surfaces. The boulders are interpreted as flash floods deposits with an unclear trigger for the transport process. Several triggers are possible, including glacial lake outburst floods (GLOFs), thunderstorms or rainfall on snow cover. From a paleoenvironmental perspective, the origin of the flash floods is of fundamental importance. The alluvial fans that flank the White Mountains at Leidy Creek display particularly impressive examples of these deposits. The boulder deposits and the source catchment at Leidy Creek were examined using 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating to help elucidate their age and origin. All boulders dated on the alluvial fans date to the Holocene. This is in accordance with the geomorphic analyses of the Leidy Creek catchment and its terraces and sediment ridges, which were also dated to the Holocene using optically stimulated luminescence (OSL) and 10Be surface exposure. The results suggest that the boulders on the alluvial fan were deposited by flash floods during thunderstorm events affecting the catchment of the Leidy Creek valley. Paleomonsoonal-induced mid-Holocene flash floods are the most plausible explanation for the discharges needed for these boulder aggradations, but a regional dataset is needed to confirm this explanation.


2009 ◽  
Vol 58 (1) ◽  
pp. 1-11
Author(s):  
Lucia A. Abbühl ◽  
Naki Akcar ◽  
Stefan Strasky ◽  
Angela A. Graf ◽  
Susan Ivy-Ochs ◽  
...  

Abstract. The method of surface exposure dating using in-situ produced cosmogenic nuclides has become an important and widely applied tool in Quaternary science. One application is the dating of erratic boulders on moraines. An important problem however remains: the evaluation of potential pre-exposure time for samples from boulder surfaces. We have tested pre-exposure by sampling all sides of a recently exposed boulder in order to measure inherited nuclides from prior exposure periods. The sampled erratic boulder rests on the right lateral moraine of the most recent advance of the Glacier de Tsijiore Nouve in the Arolla Valley, Switzerland. Mapping of the area was done to reconstruct the Holocene fluctuations of the glacier. This glacier is especially useful for such a test as it is characterized by an ideal geometric relationship between accumulation and ablation area and, therefore, responds rapidly to mass-balance changes. The sampled boulder was deposited in 1991. Assuming no prior exposure the expected concentration of a given cosmogenic nuclide should be near zero. The 10Be/9Be ratios of the five measured samples were indistinguishable from blank values within the given errors, demonstrating that the samples did not experience pre-exposure. Three samples measured for 21Ne reveal 21Ne/20Ne and 22Ne/20Ne ratios similar to those of air, with no detectable prior cosmogenic Ne accumulation.


Sign in / Sign up

Export Citation Format

Share Document