Micro-Raman spectroscopy and SEM/EDX applied to improve the zircon fission track method used for dating geological formations

2009 ◽  
Vol 40 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Airton Natanael Coelho Dias ◽  
Carlos Alberto Tello Saenz ◽  
Carlos José Leopoldo Constantino ◽  
Cleber José Soares ◽  
Felipe Ponciano Novaes ◽  
...  
2012 ◽  
Vol 66 (5) ◽  
pp. 545-551 ◽  
Author(s):  
Carlos Alberto Tello Sáenz ◽  
Eduardo Augusto Campos Curvo ◽  
Airton Natanael Coelho Dias ◽  
Cleber José Soares ◽  
Carlos José Leopoldo Constantino ◽  
...  

Studies of zircon grains using optical microscopy, micro-Raman spectroscopy, and scanning electron microscopy (SEM) have been carried out to characterize the surface of natural zircon as a function of etching time. According to the surface characteristics observed using an optical microscope after etching, the zircon grains were classified as: (i) homogeneous; (ii) anomalous, and (iii) hybrid. Micro-Raman results showed that, as etching time increases, the crystal lattice is slightly altered for homogeneous grains, it is completely damaged for anomalous grains, and it is altered in some areas for hybrid grains. The SEM (energy dispersive X-ray spectroscopy, EDS) results indicated that, independent of the grain types, where the crystallinity remains after etching, the chemical composition of zircon is approximately 33% SiO2:65% ZrO2 (standard natural zircon), and for areas where the grain does not have a crystalline structure, there are variations of ZrO2 and, mainly, SiO2. In addition, it is possible to observe a uniform surface density of fission tracks in grain areas where the determined crystal lattice and chemical composition are those of zircon. Regarding hybrid grains, we discuss whether the areas slightly altered by the chemical etching can be analyzed by the fission track method (FTM) or not. Results of zircon fission track and U-Pb dating show that hybrid and homogeneous grains can be used for dating, and not only homogeneous grains. More than 50 sedimentary samples from the Bauru Basin (southeast Brazil) were analyzed and show that only a small amount of grains are homogeneous (10%), questioning the validity of the rest of the grains for thermo-chronological evolution studies using zircon FTM dating.


2014 ◽  
Vol 68 (5) ◽  
pp. 549-556 ◽  
Author(s):  
Rosana Silveira Resende ◽  
Carlos Alberto Tello Sáenz ◽  
Eduardo Augusto Campos Curvo ◽  
Carlos José Leopoldo Constantino ◽  
Ricardo F. Aroca ◽  
...  

2004 ◽  
Vol 31 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Masaki Murakami ◽  
Takahiro Tagami

1998 ◽  
Author(s):  
I. De Wolf ◽  
G. Groeseneken ◽  
H.E. Maes ◽  
M. Bolt ◽  
K. Barla ◽  
...  

Abstract It is shown, using micro-Raman spectroscopy, that Shallow Trench Isolation introduces high stresses in the active area of silicon devices when wet oxidation steps are used. These stresses result in defect formation in the active area, leading to high diode leakage currents. The stress levels are highest near the outer edges of line structures and at square structures. They also increase with decreasing active area dimensions.


2021 ◽  
Vol 37 ◽  
pp. 102910
Author(s):  
Jhih-Huei Liu ◽  
Weiying Ke ◽  
Ming-chorng Hwang ◽  
Kuang Yu Chen

Author(s):  
D. J. Bailey ◽  
M. C. Stennett ◽  
J. Heo ◽  
N. C. Hyatt

AbstractSEM–EDX and Raman spectroscopy analysis of radioactive compounds is often restricted to dedicated instrumentation, within radiological working areas, to manage the hazard and risk of contamination. Here, we demonstrate application of WetSEM® capsules for containment of technetium powder materials, enabling routine multimodal characterisation with general user instrumentation, outside of a controlled radiological working area. The electron transparent membrane of WetSEM® capsules enables SEM imaging of submicron non-conducting technetium powders and acquisition of Tc Lα X-ray emission, using a low cost desktop SEM–EDX system, as well as acquisition of good quality μ-Raman spectra using a 532 nm laser.


Sign in / Sign up

Export Citation Format

Share Document