Two dimensional sinusoidal Ag nanograting exhibits polarization‐independent surface‐enhanced Raman spectroscopy and its surface plasmon polariton and localized surface plasmon coupling with Au nanospheres colloids

2018 ◽  
Vol 50 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Cheng Xiao ◽  
Zhibin Chen ◽  
Mengze Qin ◽  
Dongxiao Zhang ◽  
Hao Wu
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


2018 ◽  
Author(s):  
Richard Darienzo ◽  
Tatsiana Mironava ◽  
Rina Tannenbaum

<div><p>The synthesis of star-like gold nanoparticles (SGNs) in a temperature-controlled environment allows for temperature modulation and facilitates the growth of highly branched nanoparticles. By increasing the synthesis temperature, the level of branching increases as well. These highly branched features represent a distinctly novel, quasi-fractal nanoparticle morphology, referred to herein as gold nano caltrops (GNC). The increased surface roughness, local curvature and degree of inhomogeneity of GNC lend themselves to generating improved enhancement of the scattering signals in surface-enhanced Raman spectroscopy (SERS) via a mechanism in which the localized surface plasmon sites, or “hot spots,” provide the engine for the signal amplification, rather than the more conventional surface plasmon. Here, the synthesis procedure and the surface-enhancing capabilities of GNC are described and discussed in comparison with SGN.</p></div><div><br></div>


2018 ◽  
Author(s):  
Richard Darienzo ◽  
Tatsiana Mironava ◽  
Rina Tannenbaum

<div><p>The synthesis of star-like gold nanoparticles (SGNs) in a temperature-controlled environment allows for temperature modulation and facilitates the growth of highly branched nanoparticles. By increasing the synthesis temperature, the level of branching increases as well. These highly branched features represent a distinctly novel, quasi-fractal nanoparticle morphology, referred to herein as gold nano caltrops (GNC). The increased surface roughness, local curvature and degree of inhomogeneity of GNC lend themselves to generating improved enhancement of the scattering signals in surface-enhanced Raman spectroscopy (SERS) via a mechanism in which the localized surface plasmon sites, or “hot spots,” provide the engine for the signal amplification, rather than the more conventional surface plasmon. Here, the synthesis procedure and the surface-enhancing capabilities of GNC are described and discussed in comparison with SGN.</p></div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document