scholarly journals Composite Structure Based on Gold-Nanoparticle Layer and HMM for Surface-Enhanced Raman Spectroscopy Analysis

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Chen ◽  
Ting-Hui Xiao ◽  
Zhenyi Luo ◽  
Yasutaka Kitahama ◽  
Kotaro Hiramatsu ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for vibrational spectroscopy as it provides several orders of magnitude higher sensitivity than inherently weak spontaneous Raman scattering by exciting localized surface plasmon resonance (LSPR) on metal substrates. However, SERS can be unreliable for biomedical use since it sacrifices reproducibility, uniformity, biocompatibility, and durability due to its strong dependence on “hot spots”, large photothermal heat generation, and easy oxidization. Here, we demonstrate the design, fabrication, and use of a metal-free (i.e., LSPR-free), topologically tailored nanostructure composed of porous carbon nanowires in an array as a SERS substrate to overcome all these problems. Specifically, it offers not only high signal enhancement (~106) due to its strong broadband charge-transfer resonance, but also extraordinarily high reproducibility due to the absence of hot spots, high durability due to no oxidization, and high compatibility to biomolecules due to its fluorescence quenching capability.


2018 ◽  
Author(s):  
Richard Darienzo ◽  
Tatsiana Mironava ◽  
Rina Tannenbaum

<div><p>The synthesis of star-like gold nanoparticles (SGNs) in a temperature-controlled environment allows for temperature modulation and facilitates the growth of highly branched nanoparticles. By increasing the synthesis temperature, the level of branching increases as well. These highly branched features represent a distinctly novel, quasi-fractal nanoparticle morphology, referred to herein as gold nano caltrops (GNC). The increased surface roughness, local curvature and degree of inhomogeneity of GNC lend themselves to generating improved enhancement of the scattering signals in surface-enhanced Raman spectroscopy (SERS) via a mechanism in which the localized surface plasmon sites, or “hot spots,” provide the engine for the signal amplification, rather than the more conventional surface plasmon. Here, the synthesis procedure and the surface-enhancing capabilities of GNC are described and discussed in comparison with SGN.</p></div><div><br></div>


2018 ◽  
Author(s):  
Richard Darienzo ◽  
Tatsiana Mironava ◽  
Rina Tannenbaum

<div><p>The synthesis of star-like gold nanoparticles (SGNs) in a temperature-controlled environment allows for temperature modulation and facilitates the growth of highly branched nanoparticles. By increasing the synthesis temperature, the level of branching increases as well. These highly branched features represent a distinctly novel, quasi-fractal nanoparticle morphology, referred to herein as gold nano caltrops (GNC). The increased surface roughness, local curvature and degree of inhomogeneity of GNC lend themselves to generating improved enhancement of the scattering signals in surface-enhanced Raman spectroscopy (SERS) via a mechanism in which the localized surface plasmon sites, or “hot spots,” provide the engine for the signal amplification, rather than the more conventional surface plasmon. Here, the synthesis procedure and the surface-enhancing capabilities of GNC are described and discussed in comparison with SGN.</p></div><div><br></div>


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


Sign in / Sign up

Export Citation Format

Share Document