Determination of aflatoxins by enzyme-linked immunosorbent assay with special reference to aflatoxin M1 in raw milk

1985 ◽  
Vol 36 (8) ◽  
pp. 685-698 ◽  
Author(s):  
Roy Jackman
2012 ◽  
Vol 6 (3) ◽  
pp. 767-774 ◽  
Author(s):  
Wenxiao Jiang ◽  
Zhanhui Wang ◽  
Greta Nölke ◽  
Jing Zhang ◽  
Lanlan Niu ◽  
...  

2012 ◽  
Vol 25 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Sezgin Bakırdere ◽  
Tolga Yaroğlu ◽  
Nihan Tırık ◽  
Mehmet Demiröz ◽  
Abdullah Karaca

2021 ◽  
Vol 8 (3) ◽  
pp. 46
Author(s):  
Martha Maggira ◽  
Maria Ioannidou ◽  
Ioannis Sakaridis ◽  
Georgios Samouris

The highly toxic Aflatoxin M1 (AFM1) is most often detected in milk using an Enzyme-Linked-Immunosorbent Assay (ELISA) for screening purposes, while High-Performance Liquid Chromatography with Fluorescence Detector (HPLC-FL) is the reference method used for confirmation. The aim of the present study was the comparison between three commercially available ELISA kits and a newly developed HPLC-FL method for the determination of the AFM1 in milk samples. The developed HPLC-FL method was validated for the AFM1 and Aflatoxin M2 (AFM2), determining the accuracy, precision, linearity, decision limit, and detection capability with fairly good results. All three ELISA kits were also validated and showed equally good performance with high recovery rates. Moreover, the Limit Of Detection (LOD) and Limit Of Quantification (LOQ) values were found to be significantly lower than the Maximum Residue Limit (MRL) (50 ng kg−1). After the evaluation of all three commercial kits, the ELISA kit with the optimum performance along with the HPLC method was used for the determination of AFM1 in raw cow’s, goat’s, and sheep’s milk samples (396) obtained from producers in different regions of Greece. The evaluation of both methods showed that this ELISA kit could be considered as a faster and equally reliable alternative method to HPLC in routine analysis for the determination of AFM1 in milk.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tsige Shigute ◽  
Alemayehu P. Washe

In this study, the reduction of aflatoxin M1 (AFM1) levels during lab-scale ergo production was investigated through determination of the residual levels of AFM1 using Enzyme Linked Immunosorbent Assay. The results showed gradual and incubation time dependent reduction of AFM1 level in the raw milk samples being fermented to ergo. The maximum reductions of 57.33 and 54.04% were recorded in AFM1 in natural and LAB inoculums initiated fermentations, respectively, in 5 days of incubation. Although a significant difference (P=0.05) in the AFM1 decrease in the two types of fermentations was recorded, such findings could vary with milk samples depending on initial load of the microorganisms as determined by hygienic conditions. However, the level of AFM1 in control (sterilized) samples showed only a 5.5% decrease during the entire period of incubation. Microbiological investigation showed increasing LAB counts with incubation time. A gradual decrease in pH of the milk samples was observed during fermentation. Considering the fact that both viable and dead bacterial cells could remove AFM1 during ergo production, the mechanism is proposed as predominantly involving noncovalent binding of the toxin with the chemical components of the bacterial cell wall.


Author(s):  
J Grøndahl-HANSEN ◽  
N Agerlin ◽  
L S Nielsen ◽  
K Danø

An enzyme-linked immunosorbent assay (ELISA) was developed for the measurement of human urokinase-type plasminogen activator (u-PA) in plasma and serum. Microtiter plates were coated with a monoclonal antibody and incubated with standard or sample. Bound u-PA was quantitated with polyclonal antibodies conjugated with biotin, followed by avidin-peroxidase. The assay was 10-fold as sensitive as other previously reported ELISAs, the detection limit being approximately 1 pg of u-PA in a volume of 100 μl with a linear dose-response up to 15 pg of u-PA. The assay detected active u-PA and its inactive proenzyme form equally well and the recovery of both forms was higher than 90% in plasma. A variety of structurally related proteins, including t-PA, were tested, but no reaction with proteins other than u-PA and its amino-terminal degradation product were observed. The intra-assay and inter-assay coefficients of variation for determination of u-PA in plasma were 7.6% and 8.4%, respectively. The assay was equally applicable to serum. The values obtained with plasma and serum were similar, and the results were not affected by small variations in the preparation of the samples. The ELISA was used to measure the concentration of u-PA in plasma from 34 healthy donors. The mean values for u-PA in plasma from healthy donors was 1.1 ng/ml ± 0.3 ng/ml (SD) (range 0.6 - 1.5 ng/ml). No significant differences were found between men and women and no correlation between u-PA concentration and age could be demonstrated.The mean u-PA concentration in plasma from healthy donors obtained in this study is substantially lower than that reported by others. This might be due to different methods of determination of the protein content of the standard preparations or to differences in the specificity of the assays.


Sign in / Sign up

Export Citation Format

Share Document