scholarly journals The effect of local steroid application on bony fusion in a rat posterolateral spinal arthrodesis model

JOR Spine ◽  
2021 ◽  
Author(s):  
Abhishek Kannan ◽  
Silvia Minardi ◽  
David J. Ellenbogen ◽  
Mitchell J. Hallman ◽  
Allison C. Greene ◽  
...  
2019 ◽  
Vol 30 (6) ◽  
pp. 767-771
Author(s):  
Xinqiang Yao ◽  
Ruoting Ding ◽  
Junhao Liu ◽  
Siyuan Zhu ◽  
Jingshen Zhuang ◽  
...  

OBJECTIVEThe aim of this study was to evaluate the effect of lumbar sacralization on the level of vertebral slip and disc degeneration in patients with L4 spondylolysis.METHODSThe authors analyzed data from 102 cases in which patients underwent surgical treatment for L4 spondylolysis and spondylolisthesis at their institution between March 2007 and September 2016. Lumbar sacralization was characterized by the presence of pseudarthrosis and/or bony fusion between the L5 transverse process and sacrum, and the type of lumbosacral transitional vertebra (LSTV) was evaluated with the Castellvi classification. The amount of vertebral slippage was measured using the Taillard technique and Meyerding grade. Degeneration of the L4–5 segment was quantified using the Pfirrmann and Modic classifications. Patients were divided into 2 groups based on the presence or absence of sacralization, and the amount of vertebral slip and degeneration of the L4–5 segment was compared between groups.RESULTSLumbar sacralization was present in 37 (36%) of 102 patients with L4 spondylolysis. The LSTV was type IIa in 10 cases, type IIb in 7, type IIIa in 2, and type IIIb in 18. The levels of vertebral slip and disc degeneration in the group of patients with sacralization were significantly greater than in the group without sacralization. No significant difference was found between the 2 groups with respect to Modic changes.CONCLUSIONSThe increased stability between a sacralized L5 and the sacrum may predispose the L4–5 segment to greater instability and disc degeneration in patients with L4 spondylolysis.


2005 ◽  
Vol 127 (6) ◽  
pp. 929-933 ◽  
Author(s):  
Eric H. Ledet ◽  
Michael P. Tymeson ◽  
Simon Salerno ◽  
Allen L. Carl ◽  
Andrew Cragg

Background: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus—an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. Method of Approach: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrained flexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. Results: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. Conclusions: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.


2001 ◽  
Vol 94 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Paul D. Sawin ◽  
Curtis A. Dickman ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
William D. Bichard ◽  
...  

Object. The use of corticosteroid agents during the healing phase after spinal arthrodesis remains controversial. Although anecdotal opinion suggests that corticosteroids may inhibit bone fusion, such an effect has not been substantiated in clinical trials or laboratory investigations. This study was undertaken to delineate the effect of exogenous corticosteroid administration on bone graft incorporation in an experimental model of posterolateral lumbar fusion. Methods. An established, well-validated model of lumbar intertransverse process spinal fusion in the rabbit was used. Twenty-four adult New Zealand white rabbits underwent L5–6 bilateral posterolateral spinal fusion in which autogenous iliac crest bone graft was used. After surgery, the animals were randomized into two treatment groups: a control group (12 rabbits) that received intramuscular injections of normal saline twice daily and a dexamethasone group (12 rabbits) that received intramuscular dexamethasone (0.05 mg/kg) twice daily. After 42 days, the animals were killed and the integrity of the spinal fusions was assessed by radiography, manual palpation, and biomechanical testing. In seven (58%) of the 12 control rabbits, solid posterolateral fusion was achieved. In no dexamethasone-treated rabbits was successful fusion achieved (p = 0.003). Tensile strength and stiffness of excised spinal segments were significantly lower in dexamethasone-treated animals than in control animals (tensile strength 91.4 ± 30.6 N and 145.3 ± 48.2, respectively, p = 0.004; stiffness 31.4 ± 11.6 and 45.0 ± 15.2 N/mm, respectively, p = 0.02). Conclusions. The corticosteroid agent dexamethasone inhibited bone graft incorporation in a rabbit model of single-level posterolateral lumbar spinal fusion, inducing a significantly higher rate of nonunion, compared with that in saline-treated control animals.


2016 ◽  
Vol 16 (10) ◽  
pp. S121
Author(s):  
Joseph A. Weiner ◽  
Ralph W. Cook ◽  
Danielle S. Chun ◽  
Mark McClendon ◽  
Sungsoo S. Lee ◽  
...  

Spine ◽  
2008 ◽  
Vol 33 (7) ◽  
pp. 792-796 ◽  
Author(s):  
Travis D. Richardson ◽  
Stephen J. Pineda ◽  
K Brandon Strenge ◽  
Tim A. Van Fleet ◽  
Margaret MacGregor ◽  
...  
Keyword(s):  

2016 ◽  
Vol 31 (9) ◽  
pp. 227-232.e1 ◽  
Author(s):  
David C. Sing ◽  
Jeffrey J. Barry ◽  
Thomas U. Aguilar ◽  
Alexander A. Theologis ◽  
Joseph T. Patterson ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. 188
Author(s):  
Philip Thomas ◽  
Michael Amoo ◽  
Jack Horan ◽  
Mohammed Ben Husien ◽  
Derek Cawley ◽  
...  

Background: transarticular screw (TAS) fixation without a supplementary posterior construct, even in rheumatoid arthritis (RA) patients, provides sufficient stability with acceptable clinical results. Here, we present our experience with 15 RA patients who underwent atlantoaxial (AA) TAS fixation without utilizing a supplementary posterior fusion. Methods: To treat AA instability, all 15 RA patients underwent C1–C2 TAS fixation without a supplementary posterior construct. Patients were followed for at least 24 months. Pre- and postoperative sagittal measures of C1– C2, C2–C7, and C1–C7 angles, atlanto-dens interval (ADI), posterior atlanto-dens interval (PADI), and adjacent segment (i.e., C2–C3) anterior disc height (ADH) were retrospectively recorded from lateral X-ray imaging. The presence or absence of superior migration of the odontoid (SMO), cervical subaxial subluxation, C1–C2 bony fusion, screw pull-out, and screw breakage were also noted. Results: There was little difference between the pre- and postoperative studies regarding angles measured. Following TAS fixation, the mean ADI shortened, and mean PADI lengthened. There was no difference in the mean measures of C2–C3 ADH. There was no evidence of SMO pre- or postoperatively. Two patients developed anterior subluxation at C5–C6; one of the two also developed anterior subluxation at C2–C3. All patients subsequently showed C1–C2 bony fusion without screw pull-out or breakage. Conclusion: In RA patients who have undergone C1–C2 TAS fixation, eliminating a supplementary posterior fusion resulted in adequate stability.


Sign in / Sign up

Export Citation Format

Share Document