Diagnostic Role of Renal Doppler Ultrasound and Plasma Renin Activity as Screening Tools for Renovascular Hypertension in Children

2019 ◽  
Vol 38 (10) ◽  
pp. 2651-2657 ◽  
Author(s):  
Seunghyun Lee ◽  
Young Hun Choi ◽  
Yeon Jin Cho ◽  
Jung‐Eun Cheon ◽  
Ji Eun Park ◽  
...  
2003 ◽  
Vol 284 (3) ◽  
pp. F498-F502 ◽  
Author(s):  
Andrea Hartner ◽  
Nada Cordasic ◽  
Margarete Goppelt-Struebe ◽  
Roland Veelken ◽  
Karl F. Hilgers

Upregulation of the inducible cyclooxygenase (COX-2) in the macula densa accompanies the activation of the juxtaglomerular apparatus in many high-renin conditions. The functional role of COX-2 in these disease states is poorly understood. We tested whether COX-2 is required to increase renin in renovascular hypertension. Rats with established two-kidney, one-clip (2K1C) hypertension were treated for 2 wk with two different inhibitors of COX-2, NS-398 and rofecoxib, respectively. Hypertension in 2K1C rats was not affected or slightly enhanced by COX-2 inhibition, as measured intra-arterially in conscious animals. The increase in plasma renin activity was also unchanged by both rofecoxib and NS-398. The number of glomeruli with a renin-positive juxtaglomerular apparatus was elevated in clipped kidneys and decreased in contralateral kidneys of 2K1C rats. This pattern was unaltered by COX-2 inhibition. To test the effects of COX-2 blockade on a primarily macula densa-mediated stimulus, we studied salt depletion for comparison. A low-salt diet induced a significant increase in plasma renin activity, which was partially inhibited by treatment with NS-398. We conclude that inhibition of COX-2 in established renovascular hypertension does not affect renin synthesis or release. Thus either COX-2 is not necessary for the macula densa mechanism or the macula densa is not important for maintaining high renin in renovascular hypertension.


1983 ◽  
Vol 244 (2) ◽  
pp. R244-R248 ◽  
Author(s):  
C. C. Barney ◽  
R. M. Threatte ◽  
M. J. Fregly

The role of angiotensin II in the control of water intake following deprivation of water for varying lengths of time was studied. Male rats were deprived of water for 0, 12, 24, 36, or 48 h. Water intakes were measured with and without pretreatment with the angiotensin I-converting enzyme inhibitor, captopril (50 mg/kg, ip). Captopril had no significant effect on water intake following either 0 or 12 h of water deprivation. However, captopril significantly attenuated water intake following 24-48 h of water deprivation with the magnitude of the attenuation increasing as the length of the period of water deprivation increased. Plasma renin activity was significantly increased over control levels after 24-48 h of water deprivation but not after 12 h of water deprivation. Plasma renin activity tended to increase as the length of the water-deprivation period increased. Serum osmolality and sodium concentration were significantly increased over control levels following 12-48 h of water deprivation. Serum osmolality and sodium concentration failed to show any further increases with increasing length of water deprivation beyond the increases following 12 h of water deprivation. The data indicate that the water intake of water-deprived rats can be divided into an angiotensin II-dependent component and angiotensin II-independent component. The angiotensin II-independent component appears to be more important in the early stages of water deprivation whereas the angiotensin II-dependent component becomes more important as the length of the water-deprivation period increases.


2010 ◽  
Vol 391 (12) ◽  
Author(s):  
M. David Percival ◽  
Sylvie Toulmond ◽  
Nathalie Coulombe ◽  
Wanda Cromlish ◽  
Sylvie Desmarais ◽  
...  

Abstract Renin is the first enzyme in the renin-angiotensin-aldosterone system which is the principal regulator of blood pressure and hydroelectrolyte balance. Previous studies suggest that cathepsin B is the activator of the prorenin zymogen. Here, we show no difference in plasma renin activity, or mean arterial blood pressure between wild-type and cathepsin B knockout mice. To account for potential gene compensation, a potent, selective, reversible cathepsin B inhibitor was developed to determine the role of cathepsin B on prorenin processing in rats. Pharmacological inhibition of cathepsin B in spontaneously hypertensive and double transgenic rats did not result in a reduction in renal mature renin protein levels or plasma renin activity. We conclude that cathepsin B does not play a significant role in this process in rodents.


1981 ◽  
Vol 240 (6) ◽  
pp. F515-F521
Author(s):  
A. A. Seymour ◽  
J. O. Davis ◽  
S. F. Echtenkamp ◽  
J. R. Dietz ◽  
R. H. Freeman

To investigate the role of endogenous prostaglandins in renin release stimulated via adrenergic pathways, isoproterenol, norepinephrine (NE) and NE in the presence of phentolamine (PTA) were infused into conscious sodium-replete rats and dogs. Isoproterenol (1 microgram.kg-1.min-1) infusion into intact rats increased plasma renin activity (PRA) eightfold. AFter pretreatment with the prostaglandin (PG) cyclooxygenase inhibitor indomethacin (5 mg/kg), isoproterenol increased PRA 16-fold. In dogs, isoproterenol (0.4 microgram.kg-1.min-1) increased PRA six-fold before indomethacin and 11-fold during PG inhibition. Infusion of NE into both rats (250 ng.kg-1.min-1) and dogs (1 microgram.kg-1.min-1) failed to increase PRA before indomethacin, but during inhibition of PG synthesis NE increased PRA in both species. During partial alpha-adrenergic blockade with PTA in dogs, PTA alone increased PRA by 38% and NE given during PTA infusion increased PRA further both before indomethacin by twofold and during PG inhibition by fivefold. In rats given NE during PTA infusion, PRA increased only after indomethacin injection. Additionally, in dogs the renin responses to these adrenergic agents were even greater after indomethacin administration than before the drug. These results in both conscious rats and dogs give no indication that renal prostaglandins mediate the renin response to adrenergic stimulation.


2004 ◽  
Vol 39 (9) ◽  
pp. 531-536 ◽  
Author(s):  
Woo Sun Kim ◽  
Tae Il Han ◽  
Seung Hyup Kim ◽  
Mira Park ◽  
In-One Kim ◽  
...  

1983 ◽  
Vol 244 (1) ◽  
pp. R74-R77 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.


Sign in / Sign up

Export Citation Format

Share Document