Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photocatalysis

2018 ◽  
Vol 29 (3) ◽  
pp. 485-494 ◽  
Author(s):  
Alessandro Piccolo ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Assunta Nuzzo ◽  
Marios Drosos ◽  
...  
Author(s):  
Assunta Nuzzo ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Giancarlo Moschetti ◽  
Alessandro Piccolo

2011 ◽  
Vol 45 (15) ◽  
pp. 6697-6702 ◽  
Author(s):  
Alessandro Piccolo ◽  
Riccardo Spaccini ◽  
Antonio Nebbioso ◽  
Pierluigi Mazzei

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2016 ◽  
Vol 52 (4) ◽  
pp. 585-593 ◽  
Author(s):  
Assunta Nuzzo ◽  
Elisa Madonna ◽  
Pierluigi Mazzei ◽  
Riccardo Spaccini ◽  
Alessandro Piccolo

2017 ◽  
Vol 111 ◽  
pp. 44-59 ◽  
Author(s):  
Hugues Clivot ◽  
Bruno Mary ◽  
Matthieu Valé ◽  
Jean-Pierre Cohan ◽  
Luc Champolivier ◽  
...  

2003 ◽  
Author(s):  
Benny Chefetz ◽  
Baoshan Xing

Sorption of hydrophobic compounds to aliphatic components of soil organic matter (SOM) is poorly understood even though these aliphatic carbons are a major fraction of SOM. The main source of aliphatic compounds in SOM is above- and below-ground plant cuticular materials (cutin, cutan and suberin). As decomposition proceeds, these aliphatic moieties tend to accumulate in soils. Therefore, if we consider that cuticular material contributes significantly to SOM, we can hypothesize that the cuticular materials play an important role in the sorption processes of hydrophobic compounds (including pesticides) in soils, which has not yet been studied. The overall goal of this research was to illustrate the mechanism and significance of the refractory aliphatic structures of SOM in sorbing hydrophobic compounds (nonionic and weakly polar pesticides). The importance of this study is related to our ability to demonstrate the sorption relationship between key pesticides and an important fraction of SOM. The specific objectives of the project were: (1) To isolate and characterize cuticular fractions from selected plants; (2) To investigate the sorption mechanism of key hydrophobic pesticides and model compounds to cuticular plant materials; (3) To examine the sorption mechanisms at the molecular level using spectroscopic techniques; (4) To investigate the sorption of key hydrophobic pesticides to synthetic polymers; (5) To evaluate the content of cuticular materials in agricultural soils; and (6) To study the effect of incubation of plant cuticular materials in soils on their sorptive capabilities. This project demonstrates the markedly high sorption capacity of various plant cuticular fractions for hydrophobic organic compounds (HOCs) and polar organic pollutants. Both cutin (the main polymer of the cuticle) and cutan biopolymers exhibit high sorption capability even though both sorbents are highly aliphatic in nature. Sorption by plant cuticular matter occurs via hydrophobic interactions and H-bonding interactions with polar sorbates. The cutin biopolymer seems to facilitate reversible and noncompetitive sorption, probably due to its rubbery nature. On the other hand, the epicuticular waxes facilitate enhance desorption in a bi-solute system. These processes are possibly related to phase transition (melting) of the waxes that occur in the presence of high solute loading. Moreover, our data highlight the significance of polarity and accessibility of organic matter in the uptake of nonpolar and polar organic pollutants by regulating the compatibility of sorbate to sorbent. In summary, our data collected in the BARD project suggest that both cutin and cutan play important roles in the sorption of HOCs in soils; however, with decomposition the more condensed structure of the cutin and mainly the cutan biopolymer dominated sorption to the cuticle residues. Since cutin and cutan have been identified as part of SOM and humic substances, it is suggested that retention of HOCs in soils is also controlled by these aliphatic domains and not only by the aromaticrich fractions of SOM.


Sign in / Sign up

Export Citation Format

Share Document