Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling

2019 ◽  
Vol 31 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Tangao Hu ◽  
Jiahong Liu ◽  
Gang Zheng ◽  
Dengrong Zhang ◽  
Kangning Huang
2018 ◽  
Vol 10 (11) ◽  
pp. 1737 ◽  
Author(s):  
Jinchao Song ◽  
Tao Lin ◽  
Xinhu Li ◽  
Alexander V. Prishchepov

Fine-scale, accurate intra-urban functional zones (urban land use) are important for applications that rely on exploring urban dynamic and complexity. However, current methods of mapping functional zones in built-up areas with high spatial resolution remote sensing images are incomplete due to a lack of social attributes. To address this issue, this paper explores a novel approach to mapping urban functional zones by integrating points of interest (POIs) with social properties and very high spatial resolution remote sensing imagery with natural attributes, and classifying urban function as residence zones, transportation zones, convenience shops, shopping centers, factory zones, companies, and public service zones. First, non-built and built-up areas were classified using high spatial resolution remote sensing images. Second, the built-up areas were segmented using an object-based approach by utilizing building rooftop characteristics (reflectance and shapes). At the same time, the functional POIs of the segments were identified to determine the functional attributes of the segmented polygon. Third, the functional values—the mean priority of the functions in a road-based parcel—were calculated by functional segments and segmental weight coefficients. This method was demonstrated on Xiamen Island, China with an overall accuracy of 78.47% and with a kappa coefficient of 74.52%. The proposed approach could be easily applied in other parts of the world where social data and high spatial resolution imagery are available and improve accuracy when automatically mapping urban functional zones using remote sensing imagery. It will also potentially provide large-scale land-use information.


2018 ◽  
Vol 10 (3) ◽  
pp. 446 ◽  
Author(s):  
Yuanxin Jia ◽  
Yong Ge ◽  
Feng Ling ◽  
Xian Guo ◽  
Jianghao Wang ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 3254
Author(s):  
Zhou Huang ◽  
Houji Qi ◽  
Chaogui Kang ◽  
Yuelong Su ◽  
Yu Liu

Urban land use mapping is crucial for effective urban management and planning due to the rapid change of urban processes. State-of-the-art approaches rely heavily on the socioeconomic, topographical, infrastructural and land cover information of urban environments via feeding them into ad hoc classifiers for land use classification. Yet, the major challenge lies in the lack of a universal and reliable approach for the extraction and combination of physical and socioeconomic features derived from remote sensing imagery and social sensing data. This article proposes an ensemble-learning-approach-based solution of integrating a rich body of features derived from high resolution satellite images, street-view images, building footprints, points-of-interest (POIs) and social media check-ins for the urban land use mapping task. The proposed approach can statistically differentiate the importance of input feature variables and provides a good explanation for the relationships between land cover, socioeconomic activities and land use categories. We apply the proposed method to infer the land use distribution in fine-grained spatial granularity within the Fifth Ring Road of Beijing and achieve an average classification accuracy of 74.2% over nine typical land use types. The results also indicate that our model outperforms several alternative models that have been widely utilized as baselines for land use classification.


Sign in / Sign up

Export Citation Format

Share Document