A meta‐analysis of primary productivity and rain use efficiency in terrestrial grassland ecosystems

Author(s):  
Zhongling Yang ◽  
Scott L. Collins ◽  
Rebecca J. Bixby ◽  
Hongquan Song ◽  
Dong Wang ◽  
...  
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1689 ◽  
Author(s):  
Juan Chang ◽  
Jiaxi Tian ◽  
Zengxin Zhang ◽  
Xi Chen ◽  
Yizhao Chen ◽  
...  

The grasslands in arid and semi-arid regions rely heavily on the use of rain, thus, improving rain use efficiency (RUE) is essential for securing sustainable development of grassland ecosystems in these areas with limited rainfall. In this study, the spatial and temporal variabilities of RUE for grassland ecosystems over Northwestern China during 1982–2013 were analyzed using the normalized difference vegetation index (NDVI) and precipitation data. Results showed that: (1) Although grassland area has decreased gradually over the past 30 years, the NDVI in most areas showed that the vegetation was gradually restored; (2) The trends of RUE increased in the east of Northwestern China and decreased in the west of Northwestern China. However, the trends of RUE for the high-coverage grasslands (vs. low-coverage grassland) increased (decreased) significantly over the past 30 years. (3) The RUE for the grasslands was positively correlated with air temperature, while it was negatively correlated with the change of annual mean precipitation in northwestern China. Moreover, the obvious RUE increasing trends were found in the vegetation restoration areas, while the RUE decreasing trends appeared in the vegetation degradation areas. This study will be helpful for understanding the impacts of climate change on securing the sustainable development of grassland ecosystems in arid and semi-arid regions.


2012 ◽  
Vol 23 (6) ◽  
pp. 1035-1050 ◽  
Author(s):  
Jan C. Ruppert ◽  
Alexander Holm ◽  
Sabine Miehe ◽  
Esteban Muldavin ◽  
Hennie A. Snyman ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chuanjiang Tang ◽  
Xinyu Fu ◽  
Dong Jiang ◽  
Jingying Fu ◽  
Xinyue Zhang ◽  
...  

Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands.


Sign in / Sign up

Export Citation Format

Share Document