Parallel Laser Printing of a Thermal Emission Pattern in a Phase‐Change Thin Film Cavity for Infrared Camouflage and Security

2021 ◽  
pp. 2100545
Author(s):  
Yeongseon Kim ◽  
Chanhee Kim ◽  
Myeongkyu Lee
Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


2003 ◽  
Vol 42 (Part 2, No. 10A) ◽  
pp. L1158-L1160 ◽  
Author(s):  
Muneyuki Naito ◽  
Manabu Ishimaru ◽  
Yoshihiko Hirotsu ◽  
Masaki Takashima

2021 ◽  
Vol 170 ◽  
pp. 107159
Author(s):  
Md Muntasir Alam ◽  
Md Shajedul Hoque Thakur ◽  
Mahmudul Islam ◽  
Mohammad Nasim Hasan ◽  
Yuichi Mitsutake ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2351-2359
Author(s):  
Hao Ouyang ◽  
Haitao Chen ◽  
Yuxiang Tang ◽  
Jun Zhang ◽  
Chenxi Zhang ◽  
...  

AbstractStrong quantum confinement and coulomb interactions induce tightly bound quasiparticles such as excitons and trions in an atomically thin layer of transitional metal dichalcogenides (TMDs), which play a dominant role in determining their intriguing optoelectronic properties. Thus, controlling the excitonic properties is essential for the applications of TMD-based devices. Here, we demonstrate the all-optical tuning of the local excitonic emission from a monolayer MoS2 hybridized with phase-change material Ge2Sb2Te5 (GST) thin film. By applying pulsed laser with different power on the MoS2/GST heterostructure, the peak energies of the excitonic emission of MoS2 can be tuned up to 40 meV, and the exciton/trion intensity ratio can be tuned by at least one order of magnitude. Raman spectra and transient pump-probe measurements show that the tunability originated from the laser-induced phase change of the GST thin film with charge transferring from GST to the monolayer MoS2. The dynamic tuning of the excitonic emission was all done with localized laser pulses and could be scaled readily, which pave a new way of controlling the excitonic emission in TMDs. Our findings could be potentially used as all-optical modulators or switches in future optical networks.


Author(s):  
Solomon Adera ◽  
Rishi Raj ◽  
Evelyn N. Wang

Thermal management is increasingly becoming a bottleneck for a variety of high power density applications such as integrated circuits, solar cells, microprocessors, and energy conversion devices. The performance and reliability of these devices are usually limited by the rate at which heat can be removed from the device footprint, which averages well above 100 W/cm2 (locally this heat flux can exceed 1000 W/cm2). State-of-the-art air cooling strategies which utilize the sensible heat are insufficient at these large heat fluxes. As a result, novel thermal management solutions such as via thin-film evaporation that utilize the latent heat of vaporization of a fluid are needed. The high latent heat of vaporization associated with typical liquid-vapor phase change phenomena allows significant heat transfer with small temperature rise. In this work, we demonstrate a promising thermal management approach where square arrays of cylindrical micropillar arrays are used for thin-film evaporation. The microstructures control the liquid film thickness and the associated thermal resistance in addition to maintaining a continuous liquid supply via the capillary pumping mechanism. When the capillary-induced liquid supply mechanism cannot deliver sufficient liquid for phase change heat transfer, the critical heat flux is reached and dryout occurs. This capillary limitation on thin-film evaporation was experimentally investigated by fabricating well-defined silicon micropillar arrays using standard contact photolithography and deep reactive ion etching. A thin film resistive heater and thermal sensors were integrated on the back side of the test sample using e-beam evaporation and acetone lift-off. The experiments were carried out in a controlled environmental chamber maintained at the water saturation pressure of ≈3.5 kPa and ≈25 °C. We demonstrated significantly higher heat dissipation capability in excess of 100 W/cm2. These preliminary results suggest the potential of thin-film evaporation from microstructured surfaces for advanced thermal management applications.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Seung-Yeol Lee ◽  
Yong-Hae Kim ◽  
Seong-M. Cho ◽  
Gi Heon Kim ◽  
Tae-Youb Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document