Optical property study of phase change optical recording thin film media

1996 ◽  
Author(s):  
Yanwu Lu ◽  
Ailun Rong
2003 ◽  
Vol 42 (Part 2, No. 10A) ◽  
pp. L1158-L1160 ◽  
Author(s):  
Muneyuki Naito ◽  
Manabu Ishimaru ◽  
Yoshihiko Hirotsu ◽  
Masaki Takashima

Materia Japan ◽  
2003 ◽  
Vol 42 (12) ◽  
pp. 889-889
Author(s):  
Muneyuki Naito ◽  
Manabu Ishimaru ◽  
Yoshihiko Hirotsu ◽  
Masaki Takashima

2011 ◽  
Author(s):  
Sin-Liang Ou ◽  
Po-Cheng Kuo ◽  
Han-Feng Chang ◽  
Chin-Yen Yeh ◽  
Chao-Te Lee ◽  
...  

MRS Bulletin ◽  
1990 ◽  
Vol 15 (4) ◽  
pp. 40-45 ◽  
Author(s):  
Matthew Libera ◽  
Martin Chen

Phase-change erasable optical recording uses a focused laser beam as a heat source to reversibly switch a micron-sized area in a thin film between the amorphous and crystalline states. A bit of information is stored as an amorphous spot in a crystalline background, and the state of the bit is determined by the differing optical properties of the amorphous and crystalline phases. This concept was first demonstrated in 1971 and then, after about a decade of exploratory work, the field accelerated throughout the 1980s at several research laboratories. Currently the subject of number of reviews, the field of phase-change materials promises to broaden and intensify in the 1990s.The active layer, where the storage occurs, is typically a tellurium-based alloy with a variety of solute species. Early work studied the recording properties of single-layered films, but it has been clearly shown that multilayered films, where the active layer is sandwiched between two or more dielectric layers, have superior recording properties and resistance to irreversible damage caused by laser heating. The dielectric layers (typically SiO2, Si3N4, or ZnS) provide barriers to active-layer oxidation and contamination, help prevent the hole formation associated with ablative write-once storage methods, and act as crucibles and heat sinks which contain the molten spot and influence its cooling properties, respectively. A typical multilayer structure is shown in the cross-sectional transmission electron micrograph of Figure 1.


Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


2001 ◽  
Author(s):  
Yagya D. Sharma ◽  
Laxman Singh ◽  
Promod K. Bhatnagar

2021 ◽  
Vol 170 ◽  
pp. 107159
Author(s):  
Md Muntasir Alam ◽  
Md Shajedul Hoque Thakur ◽  
Mahmudul Islam ◽  
Mohammad Nasim Hasan ◽  
Yuichi Mitsutake ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2351-2359
Author(s):  
Hao Ouyang ◽  
Haitao Chen ◽  
Yuxiang Tang ◽  
Jun Zhang ◽  
Chenxi Zhang ◽  
...  

AbstractStrong quantum confinement and coulomb interactions induce tightly bound quasiparticles such as excitons and trions in an atomically thin layer of transitional metal dichalcogenides (TMDs), which play a dominant role in determining their intriguing optoelectronic properties. Thus, controlling the excitonic properties is essential for the applications of TMD-based devices. Here, we demonstrate the all-optical tuning of the local excitonic emission from a monolayer MoS2 hybridized with phase-change material Ge2Sb2Te5 (GST) thin film. By applying pulsed laser with different power on the MoS2/GST heterostructure, the peak energies of the excitonic emission of MoS2 can be tuned up to 40 meV, and the exciton/trion intensity ratio can be tuned by at least one order of magnitude. Raman spectra and transient pump-probe measurements show that the tunability originated from the laser-induced phase change of the GST thin film with charge transferring from GST to the monolayer MoS2. The dynamic tuning of the excitonic emission was all done with localized laser pulses and could be scaled readily, which pave a new way of controlling the excitonic emission in TMDs. Our findings could be potentially used as all-optical modulators or switches in future optical networks.


2015 ◽  
Author(s):  
Tribikram Panda ◽  
R. Naik ◽  
S. Chinnaiyah ◽  
R. Ganesan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document