Microstructures and electrochemical behaviors of as‐cast magnesium alloys with enhanced compressive strengths and corrosion decomposition

2020 ◽  
Vol 71 (12) ◽  
pp. 1989-1998
Author(s):  
Xuewu Li ◽  
Tian Shi ◽  
Ben Li ◽  
Xuegang Zhou ◽  
Chuanwei Zhang ◽  
...  
2007 ◽  
Vol 561-565 ◽  
pp. 163-166
Author(s):  
Yoshihiro Terada ◽  
Tatsuo Sato

Creep rupture tests were performed for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) at 29 kinds of creep conditions in the temperature range between 423 and 498 K. The creep curve for the alloy is characterized by a minimum in the creep rate followed by an accelerating stage. The minimum creep rate (ε& m) and the creep rupture life (trup) follow the phenomenological Monkman-Grant relationship; trup = C0 /ε& m m. It is found for the AX52 die-cast alloy that the exponent m is unity and the constant C0 is 2.0 x 10-2, independent of creep testing temperature. The values of m and C0 are compared with those for another die-cast magnesium alloys. The value m=1 is generally detected for die-cast magnesium alloys. On the contrary, the value of C0 sensitively depends on alloy composition, which is reduced with increasing the concentration of alloying elements such as Al, Zn and Ca.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1700 ◽  
Author(s):  
Xi-Shu Wang ◽  
Chang-Hao Tan ◽  
Juan Ma ◽  
Xiao-Dong Zhu ◽  
Qing-Yuan Wang

The low cycle fatigue tests on the crack initiation and propagation of cast magnesium alloys with two small holes were carried out by using in-situ scanning electron microscope (SEM) observation technology. The fatigue crack propagation behaviors and fatigue life, which are affected by two small artificial through holes, including the distances between two holes and their locations, were discussed in detail based on the experimental results and the finite element analysis (FEA). The results indicated that the fatigue multi-cracks occurred chiefly at the edges of two holes and the main crack propagation was along the weak dendrite boundary with the plastic deformation vestiges on the surface of α-Mg phase of cast AM50 and AM60B alloys. The fatigue cracking characteristics of cast AZ91 alloy depended mainly on the brittle properties of β-Mg17Al12 phase, in which the multi-cracks occurred still at the edges of two holes and boundaries of β-Mg17Al12 phase. The fatigue crack initiation position of cast magnesium alloys depends strongly on the radius of curvature of through hole or stress concentration factor at the closed edges of two through holes. In addition, the fatigue multi-cracks were amalgamated for the samples with titled 45° of two small holes of cast Mg-Al alloys when the hole distance is less than 4D (D is the diameter of the small hole).


2013 ◽  
pp. 223-226 ◽  
Author(s):  
Ulrich Draugelates ◽  
Belkacem Bouaifi ◽  
René Poss ◽  
Claus-C. Kedenburg

Shot Peening ◽  
2006 ◽  
pp. 374-379 ◽  
Author(s):  
Tomasz Ludian ◽  
Matthias Hilpert ◽  
Armin Kiefer ◽  
Lothar Wagner

2006 ◽  
Vol 129 (3) ◽  
pp. 422-430 ◽  
Author(s):  
Sp. G. Pantelakis ◽  
N. D. Alexopoulos ◽  
A. N. Chamos

The potential of cast magnesium alloys for being used as structural materials in lightweight applications is assessed. The ability of the alloys for mechanical performance is evaluated and compared against the ability of widely used structural aircraft cast aluminum alloys. The specific quality index QDS, devised for evaluating both cast and wrought aluminum alloys, will be exploited to evaluate the ability of a number of cast magnesium alloys for mechanical performance. The exploited quality index QDS involves the material’s yield strength Rp to account for strength, the strain energy density W to account for both tensile ductility and toughness, and the material’s density ρ. The effects of differences in chemical composition and heat treatment conditions on the mechanical performance of cast magnesium alloys have been assessed. The use of the quality index QDS has been proved to appreciably facilitate the evaluation of the mechanical performance of cast magnesium alloys and also the comparison between alloys of different base materials. The results quantify the gap to be closed such as to involve cast magnesium alloys in aircraft structural applications.


Sign in / Sign up

Export Citation Format

Share Document